Title: Strong and △-Convergence of Modified Two-Step Iterations for Nearly Asymptotically Nonexpansive Mappings in Hyperbolic Spaces
Author(s): G. S. Saluja
Pages: 39-52
Cite as:
G. S. Saluja, Strong and △-Convergence of Modified Two-Step Iterations for Nearly Asymptotically Nonexpansive Mappings in Hyperbolic Spaces, Int. J. Anal. Appl., 8 (1) (2015), 39-52.

Abstract


The aim of this article is to establish a △-convergence and some strong convergence theorems of modified two-step iterations for two nearly asymptotically nonexpansive mappings in the setting of hyperbolic spaces. Our results extend and generalize the previous work from the current existing literature.

Full Text: PDF

 

References


  1. M. Abbas, Z. Kadelburg and D.R. Sahu, Fixed point theorems for Lipschitzian type mappings in CAT(0) spaces, Math. Comput. Model. 55 (2012), 1418-1427. Google Scholar

  2. R.P. Agarwal, Donal O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8(1) (2007), 61-79. Google Scholar

  3. I. Beg, An iteration scheme for asymptotically nonexpansive mappings on uniformly convex metric spaces, Nonlinear Anal. Forum, 6 (2001), 27-34. Google Scholar

  4. M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999. Google Scholar

  5. S.S. Chang, L. Wang, H.W. Joesph Lee, C.K. Chan, L. Yang, Demiclosed principle and ∆-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219(5) (2012), 2611-2617. Google Scholar

  6. S. Dhompongsa and B. Panyanak, On 4-convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572-2579. Google Scholar

  7. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. Google Scholar

  8. K. Goebel and W.A. Kirk, Iterations processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123. Google Scholar

  9. M. Gromov, Hyperbolic groups. Essays in group theory (S. M. Gersten, ed). Springer Verlag, MSRI Publ. 8 (1987), 75-263. Google Scholar

  10. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. Google Scholar

  11. S.H. Khan and M. Abbas, Strong and 4-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), 109-116. Google Scholar

  12. A.R. Khan, H. Fukhar-ud-din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 54. Google Scholar

  13. W.A. Kirk, Krasnoselskii’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim 4 (1982), 371-381. Google Scholar

  14. W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689-3696. Google Scholar

  15. U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89-128. Google Scholar

  16. T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182. Google Scholar

  17. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7. Google Scholar

  18. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24. Google Scholar

  19. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. Google Scholar

  20. B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 268780. Google Scholar

  21. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597. Google Scholar

  22. M.O. Osilike, S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. and Computer Modelling 32(2000), 1181-1191. Google Scholar

  23. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal.: TMA, Series A, Theory Methods, 15(6)(1990), 537-558. Google Scholar

  24. B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183(1994), 118-120. Google Scholar

  25. A. S¸ahin and M. Ba¸sarir, On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory Appl. 2013 (2013), Article ID 12. Google Scholar

  26. D.R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae 46(4) (2005), 653-666. Google Scholar

  27. D.R. Sahu and I. Beg, Weak and strong convergence for fixed points of nearly asymptotically nonexpansive mappings, Int. J. Mod. Math. 3 (2008), 135-151. Google Scholar

  28. G.S. Saluja, Strong convergence theorem for two asymptotically quasinonexpansive mappings with errors in Banach space, Tamkang J. Math. 38(1) (2007), 85-92. Google Scholar

  29. G.S. Saluja, Convergence result of (L, α)-uniformly Lipschitz asymptotically quasi-nonexpansive mappings in uniformly convex Banach spaces, J˜na¯n¯abha 38 (2008), 41-48. Google Scholar

  30. H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. Google Scholar

  31. N. Shahzad, A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, 2006 (2006), Article ID 18909. Google Scholar

  32. T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8(1) (1996), 197-203. Google Scholar

  33. W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Semin. Rep. 22 (1970), 142-149. Google Scholar

  34. K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178, 301-308, 1993. Google Scholar

  35. K.K. Tan and H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994), 733-739. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2021 IJAA, unless otherwise stated.