Title: Best approximation of the Dunkl Multiplier Operators Tk,ℓ,m
Author(s): Fethi Soltani
Pages: 145-152
Cite as:
Fethi Soltani, Best approximation of the Dunkl Multiplier Operators Tk,ℓ,m, Int. J. Anal. Appl., 7 (2) (2015), 145-152.

Abstract


We study some class of Dunkl multiplier operators Tk,ℓ,m; and we give for them an application of the theory of reproducing kernels to the Tikhonov regularization,which gives the best approximation of the operators Tk,ℓ,m on a Hilbert spaces Hskℓ.

Full Text: PDF

 

References


  1. C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991) 1213– 1227. Google Scholar

  2. C.F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992) 123–138. Google Scholar

  3. M.F.E.de Jeu, The Dunkl transform, Invent. Math. 113 (1993) 147–162. Google Scholar

  4. G.S. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, J. Math. Anal. Appl. 33 (1971) 82–95. Google Scholar

  5. T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas in heat conduction multidimensional spaces, J. Inv. Ill-posed Problems 13 (2005) 479–493. Google Scholar

  6. M. R¨osler and M. Voit, Markov processes related with Dunkl operators, Adv. Appl. Math. 21 (1998) 575–643. Google Scholar

  7. E.M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85(3) (1993) 333–373. Google Scholar

  8. S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983) 74–78. Google Scholar

  9. S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal. 16 (1983) 1–6. Google Scholar

  10. S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (2004) 727–733. Google Scholar

  11. S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai Math. J. 28 (2005) 359–367. Google Scholar

  12. F. Soltani, Inversion formulas in the Dunkl-type heat conduction on Rd, Appl. Anal. 84 (2005) 541–553. Google Scholar

  13. F. Soltani, Best approximation formulas for the Dunkl L2 -multiplier operators on Rd, Rocky Mountain J. Math. 42 (2012) 305–328. Google Scholar

  14. F. Soltani, Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator, Acta Math. Sci. 33B(2) (2013) 430–442. Google Scholar

  15. F. Soltani, Operators and Tikhonov regularization on the Fock space, Int. Trans. Spec. Funct. 25(4) (2014) 283–294. Google Scholar

  16. F. Soltani, Uncertainty principles and extremal functions for the Dunkl L2 -multiplier operators, J. Oper. 2014 (2014), Article ID 659069. Google Scholar

  17. F. Soltani and A. Nemri, Analytical and numerical applications for the Fourier multiplier operators on Rn × (0, ∞), Appl. Anal. 2014, DOI:10.1080/00036811.2014.937432. Google Scholar

  18. M. Yamada, T. Matsuura and S. Saitoh, Representations of inverse functions by the integral transform with the sign kernel, Frac. Calc. Appl. Anal. 2 (2007) 161–168. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.