Title: Existence of Multiple Positive Solutions for p-Laplacian Fractional Order Boundary Value Problems
Author(s): K. R. Prasad, B. M. B. Krushna
Pages: 63-81
Cite as:
K. R. Prasad, B. M. B. Krushna, Existence of Multiple Positive Solutions for p-Laplacian Fractional Order Boundary Value Problems, Int. J. Anal. Appl., 6 (1) (2014), 63-81.

Abstract


This paper deals with the existence of at least one and multiple positive solutions for p-Laplacian fractional order two-point boundary value problems, by applying Krasnosel’skii and five functionals fixed point theorems.

Full Text: PDF

 

References


  1. R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. Google Scholar

  2. D. R. Anderson and J. M. Davis, Multiple positive solutions and eigenvalues for third order right focal boundary value problems, J. Math. Anal. Appl., 267(2002), 135–157. Google Scholar

  3. R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-line, 3(1999), 9–14. Google Scholar

  4. R. I. Avery, J. Henderson, Existence of three positive pseudo-symmetric solutions for a onedimensional p-Laplacian, J. Math. Anal. Appl., 277(2003), 395–404. Google Scholar

  5. C. Bai, Existence of positive solutions for boundary value problems of fractional functional differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 30(2010), 1–14. Google Scholar

  6. Z. Bai and H. L¨u, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005), 495–505. Google Scholar

  7. G. Chai, Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator, Boundary Value Problems, 2012(2012), 1–18. Google Scholar

  8. T. Chen and W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett., 25(2012), 1671–1675. Google Scholar

  9. J. M. Davis, J. Henderson, K. R. Prasad and W. Yin, Eigenvalue intervals for non-linear right focal problems, Appl. Anal., 74(2000), 215–231. Google Scholar

  10. R. Dehghani and K. Ghanbari, Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bulletin of the Iranian Mathematical Society, 33(2007), 1–14. Google Scholar

  11. L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), 743–748. Google Scholar

  12. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Acadamic Press, San Diego, 1988. Google Scholar

  13. A. A. Kilbas, H. M. Srivasthava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science, Amsterdam, 2006. Google Scholar

  14. L. Kong and J. Wang, Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Analysis, 42(2000), 1327–1333. Google Scholar

  15. M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. Google Scholar

  16. R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operator on order Banach spaces, Indiana Univer. Math. J., 28(1979), 673–688. Google Scholar

  17. D. O’Regan, Some general existence principles and results for (φ(y 0 ))0 = qf(t, y, y0 ), 0 < t < 1, SIAM J. Math. Appl., 24(1993), 648–668. Google Scholar

  18. I. Podulbny, Fractional Diffrential Equations, Academic Press, San Diego, 1999. Google Scholar

  19. K. R. Prasad and P. Murali, Eigenvalue intervals of two-point boundary value problems for general n th order differential equations, Nonlinear Studies, Vol. 18, No.2(2011), 167–176. Google Scholar

  20. K. R. Prasad and B. M. B. Krushna, Multiple positive solutions for a coupled system of Riemann-Liouville fractional order two-point boundary value problems, Nonlinear Studies, Vol.20, No.4(2013), 501–511. Google Scholar

  21. K. R. Prasad, B. M. B. Krushna and N. Sreedhar, Eigenvalues for iterative systems of (n, p)- type fractional order boundary value problems, International Journal of Analysis and Applications, Vol. 5, No. 2(2014), 136–146. Google Scholar

  22. K. R. Prasad and B. M. B. Krushna, Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems, Fract. Calc. Appl. Anal., Vol. 17, No.3(2014), 638–653, DOI: 10.2478/s13540-014-0190-4. Google Scholar

  23. C. Yang and J. Yan, Positive solutions for third-order Sturm-Liouville boundary value problems with p-Laplacian, Comput. Math. Appl., 59(2010), 2059–2066. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2021 IJAA, unless otherwise stated.