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Abstract. The aim of this paper is to prove that asymptotic behavior in the time of solutions for the

weakly coupled reaction diffusion system:

% —diAuj = fi (u1, w2, . . ., Um) in Q xR,

=g in 8Q x R*, (0.1)
ui(.,0)=ul() in Q,
where Q is an open bounded domain of class C* in R”, u; (t,x),i=1,m, t >0, x € are real valued

functions. We treat the system (0.1) as a dynamical system in C (Q2) x C () x ... x C () and apply
Lyapunov type stability techniques. A key ingredient in this analysis is a result which establishes that
the orbits of the dynamical system are precompact in C () x C (Q) x ... x C (). As a consequence
of Arzela-Ascoli theorem, this will be satisfied if the orbits are, for example, uniformly bounded in
CH(Q) xC'(Q) x ... x C* () for t > 0.

1. Introduction

The existence, uniqueness, and asymptotic behavior of the solution of a balanced two component
reaction diffusion system have been investigated. It was shown that a global and unique solution

existed and it's second component can be estimated using the Lyapunov Functional see [1, 14, 15].
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It was, also, demonstrated that each component of the solution converged, at infinity, to a constant
which can be used in terms of the reacting function and the initial data.

The results of the current research can be used in several areas of applied mathematics, especially
when the system equations originate from mathematical models of real systems such as in Biology,
Chemistry, Population Dynamics, and other disciplines. We know that the problem (0.1) has a unique
global solution see [5,7,17]. The main question we want to address is asymptotic behavior the
solutions for system (0.1). In fact the subject of the asymptotic behavior of reaction diffusion systems
has received a lot of attention in the last decades and several outstanding results have been proved
by some of the major experts in the field.

This question has been investigated by many authors by considering special forms of the nonlinear
terms f;.

In the case where i = 1,2 :

O — diAuy = f (U1, o) in Q x RY,

Gt — dohn = fo (1, 12) in QX RT, (1.1)

\ )\i%‘g+(1~)\,)u,20, in 8Q x R,

when di # d», and nonnegative initial data arise, for example, as models for the diffusion of substances
which at the same time react with each other chemically (cf. [8,16]). Also (1.1) is related to the
Rosenzweig-Mac Arthur equation in ecology (cf. [2]).

In the case where f (u1, un) = —f (u1, p) = —urug, Note that, the behavior of non-negative total

solutions (1.1) is treated in the paper of Alikakos [2] obtained L°°-bounds of solutions global existence
n+2

when 1 <o < , and Masuda [14] who showed that solutions exist globally for every ¢ > 1 and,
in addition, showed that the solutions converge as t goes to +oc. Recently, Haraux and Youkana [13]
established a global existence result of a system (1.1) for a large class of the function f; and f,. More

precisely, they showed that for

fi (i, ) = (U1, ) = =V (o),

the problem (1.1) admits a global solution provided that the following condition holds:

i log (L4 ()] _

Up—r+00 un

0.

In the case where d> > 0, systems of the type (1.1) occur in many applications (cf. [8]).

For triangular diffusion matrix, global bounds were proved by Kirane in [11] if 49 (x) > dl‘i?d3 ud (x) >0,

x € €2,. The author proved also that the solution (u1, up) converges to a constant vector k = (ki, k2)
as t — oo, uniformly in Q. Furthermore, k; >0, ko > 0 and ki W (ko) = 0.
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In this paper we shall generalize the results obtained in [11]. We prove the asymptotic behavior of
solutions of m-component reaction-diffusion systems with diagonal matrix and homogeneous Neumann
conditions. The reaction terms are assumed to be of polynomial growth.
We consider the following m-equations of reaction-diffusion system, with m > 2:

ou .

E—AmAU: F(U) inQx(0,400), (1.2)
where Q is an open bounded domain of class C! in R”, the vectors U and F and the matrix A, are
defined as:

U= (t1,....um)", F=(f,....fm)",

d o0 0 --- 0
0 d O
Am = 0 0 d . 0
0
0O -~ 0 0 dn

The constants (d;)” , are supposed to be strictly positive which reflects the parabolicity of the system
and implies at the same time that the diffusion matrix A, is positive defnite. The boundary conditions

and initial data (respectively) for the proposed system are assumed to satisfy:
OopU=0 on 02 x (0,+00),

and
U(0,x) = Up(x) = (42, ..., u2)T on Q

where a% denotes the outward normal derivative on the boundary 952, the vectors Uy are defined as:

2. Notations and Preliminary

In the following we denote by
|.llp the norm in LF () for 1 < P < 40,
||.]l the norm in C (€2), and
I.1l1 o the norm in C* ().
For 1 < P < o0, set
D (A) = {u:ueWz'p(Q) .98 — 0 on aQ},
Au = Au for ue D(A).

It is well known (cf. for example, [6]) that A is m-dissipative in L7 (Q) for 1 < P < co. Moreover,
the restriction of A to C (Q) is m-dissipative.
Let us now recall an overview of the asymptotic behavior of the solution for coupled reaction diffusion

systems. This will pave the way to introduce our findings later on.
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Consider the initial value problem

{ e (t) = Lu (t) + £ (u(t)) (VP

u(0) = uo,
where L is the infinitesimal generator of a Co-semigroup S (t) on a real Banach space X with norm

IIIl, f: X = R is a given function, and ug € X is a given initial datum.

Theorem 2.1. [19] Let T > 0. A function u : [0, T] — X is a weak solution of (IVP) on [0, T] if and
only if f (u(t)) € L1 (0, T, X) and u satisfies the variation of constants formula

u(t):S(t)uo—i-/OtS(t—s)f(u(s))ds, for alls € [0, T].

Definition 2.1. A function u : [0, T] — X is called a strong solution of (IVP) if u(t) is strongly
continuously differentiable in the interval 0 < t < T, u(t) € D(L) for 0 < t < T, that equation
(IVP) is satisfied for 0 < t < T and u(t) — up as t — 0.

Theorem 2.2. [18] Let f : X — X be locally Lipschitz continuous. Then for ug € X, (IVP)
has a unique weak solution defined in a maximal interval of existence [0, Tmax), Tmax > 0, U €

C ([0, Tmax) , X). Moreover, if Tmax < 0o, then
lim ||u(t)]| = +oc.
. ITmaxH (Ol

Now, let us recall the following definition.

Definition 2.2. Let {S(t)};>o be a nonlinear semigroup on a compact metric space X. If

(u9,49,..., u) € X, 09,48, ..., u) = {S(t) (3, ..., U%)}tzo is the orbit through
(u9,49,..., ul,), then the w-limite set for (u9, 49, ..., ul,) is defined by
W(u?,ug ..... u?n) ={(u1, o, ..., Um) € X : Aty = 00 :
S (tn) (ugJ w, ..., u?n) = (U, ..., Um)}

3. The Main Result

In this section, we state the main result.

Theorem 3.1. The solution w = (uy, ua, . . ., Um) of the system (1.2) converges a constant vector of
the form &€ = (&1, 65, .. ., ¢;) as t — oo, uniformly in Q i.e (u,- R 5,-) fori=1,m.

—00
Furthermore, we have:

£ >0, i=1m (&, ....6m) =0,

and
= = u? (x) dx.
>6 Q/QZI ? ()

The following lemma is a useful tool in the proof of the Theorem 3.1.
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Lemma 3.1. Let (uy, up, ..., Um) be a solution of (1.2). We have

/ |Vuil® dxdt < oo fori =1, m, here Qr =Q x[0,T] and 0 < T < oc.
QT
Proof. We have For i =1, m.

= d,‘ALI,' = ﬁ (Ul, up, ..., Um) . (3.1)

By integrating over (0, T') is obtained

T Bu; T T
/ a—t'(x, t)dt = d// Au,-dt—i—/ filup(x,t), u(x,t),..., um (x, t)) dt,
0 0 0

T T
ui(x, T)—ui(x,0) = d,-/ Au;dt + / filup(x, t), u2(x,t),..., um (x, 1)) dt,
0 0

and integrating a second time is collected over €2

-
/u,-(x,T)dx—/u/(x,O)dx:d,-// Au;dtdx
Q Q QJo

+/Q/0Tﬁ(U1(X’ t),U2(X, t) ,,,,, Um(X, t))dth

Green's formula is applied to fQ Au;dx, we gain
a .
/Au,dx: u'da—/ VuiV1dx, therefore /Au,-dX:O,
Q a0 On Q Q
thus

.
(U (x X, t), ... X X = (x X — 9(x)dx < o0
L[ et men., o) dedx = [ Tydx— [ i (0 ax < .

as a result of u; (T) € C () we have

/ filup(x, t), u2(x,t),..., Um (x,t))dtdx < oo, fori=1,m.
QT

Multiply now the it equation of (1.2) by wu;, for i = I, m, and integrating over Q7, we attain

-
// Bu, (x,t)dtdx =d // uiAu;dtdx

+/§2/o uifi(un (x, t) o (x, t), ..., Um (x, t)) dtdx,

by using the Green formula

0
/U,‘AU,‘C]'X—/ U'da—/ IV ui|? dx, therefore / u,-Au,dx——/ |Vui|? dx,
Q sq | O Q Q Q

and a simple calculation, it becomes

1 2 T T 2
/ [u? (x, t)”o dx = —d// / |Vui|* dxdt
2 Ja 0o Ja

-
—|—/O /Q ui(x, t)fi(ur (x, t), ua(x, t),..., Um (x, 1)) dxdt,
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then

/ v (x, T) + 2d// IV ujl? dxdt = / (u? (x))2 dx
Q Qr Q

+2/ Ui (0, 8) £ (0 (6, 8) o (5, £) st (x, 1)) dxdlE,
QT

consequently
2d,-/ IV ujl? dxdt < / (u? (X))2 dx
QT Q

+2/ ui(x, t)fi(un (x, t), u(x,t),..., Um (x, t)) dxdt, (3.2)
QT
since
/ (u? (X))2 dx < oo, fori=1,m.
Q
and
/ ui(x, t)fi(un (x, t), ua(x, t),..., Um (x, t)) dxdt
Qr
< ||u,-|Loo(QT)/Q filup(x,t), o (x,t),..., Um (X, t)) dxdt < oo, fori=1,m.

T

hence

2di/ |V ui|? dxdt < oo, for i =T, m.
QT

consequently

/ Vil dxdt < oo, for i =1, m. VT > 0.
QT

4. Proof of the Main Result (Theorem 3.1)
We are now ready to prove the main result of this work:

Proof of Theorem 3.1. First, if we integrate the it equation of (1.2) over © we have

ou;

— (x, 1) dx:d// Au,dx+/ filup (x, t), u2(x,t),..., Um (x, 1)) dx,
o Ot Q Q

use Green theorem to transform the terms Aw; in the light of boundary conditions we observe that

/Q%Iti(X, t) dx:/in(Lu (. t), w2 (x, ), ..., um (x, t)) dx,

if we add this equations imliying

m m
/Z%ﬁl X't)dX:/Z’c"(ul(x't)v’b(xyf) ----- U (x, 1)) dx, for i =T, m,
Qi1 Q=

if we assume that
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we get

0 I
/Z u, x,t)dx =0, fori=1,m,

as

//Za“’(x t) dxdt /Q/Otg%’;’(x,t)dtdx
= /Qizz;u,-(x,t):

dx

:/quf(x,t)dx—/ﬂgu?(x)d)(:a

we deduce that
m m
/ Zu,- (x,t)dx = / Zu,o (x) dx. (4.1)
Qi1 L)

Integrating the it" equation of the system (1.2) in Q, for i = 1, m, we have:
Bu,
(x tydx= [ fi(ur(x,t), la(x,t),..., Um (x,t))dx >0,
Q

as a means that %fﬂ ui (x, t)dx > 0. then the fonction t — [, u;(x, t) dx is increasing and Q
is bounded. Then t — ﬁfQ u;i (x, t) dx is increasing and according to the positivity of u; was
Wl‘ Jo ui (x, t) dx > 0. Therefore ﬁ Jo ui (x, t) dx is bounded below and increasing.

Formerly Eltin;oﬁ Jo ui (x, t)dx = I;, for i =1, m.

On the other hand, since sets tL>JO{u,- (t)}¢>0 . for i =1, m are precompacts in C (€2). There exists a

sequence (tn)nzo: t, — oo such that

im u; (tn) = uf, fori=1,m inC (Q),
Now, denote by w (u?, U9, ..., u,) the w-limite set for (u?, 43, ..., u%,) and ® the set of the solution

of the elliptic system

. 4.2
=0 in 89, 42

{ —didu? = i (u5 (x, t), U5 (x, 1), ..., us (x, t)) in €,
and prove ® = {(&1,%, ..., Em)} where £1,&, ..., ¢, are constants, in fact, multipliying the jt”

equation of the problem (4.2) by u? for i = 1, m and integrating over Q yields:

—d,-/ quufdx:/ wfi(uy (x, ), u5(x,t), ..., uy, (x, t)) dx.
Q Q

Apply Green formular:

d// |va|2dx:/ USE (U5 (%, £) U5 (%, £) 1 U5, (. 1)) dx.
Q Q
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Adding the it equations yields
m m
Zd,-/ |va|2dx:Z/ UEE (U5 (%, £) U5 (. £) 1 U5, (x, 1)) dx.
=i 7 i=i /%

Supposing Z usf (v (x, t), us (x, ), ..., us, (x,t)) <0 for i =1, m, then

=i

m
0< Zd,-/ IVuf|? dx <0,
i=i Q
therefore
m
Z d// IVuf|? dx = 0.
= 79
We deduce that
/|Vu,-5|2dx:0:>Vuf:O:> uF =¢;. (4.3)
Q

Replacing uf = §;, for i = 1, m in the /*" equation (4.2).
It is clear that f; (£1, &2, ..., &€m) =0.
Hereafter, we are going to show that w (9, 43, ..., ul,) # ¢. Now, Vx € 2, 0 € ]-1,1[ and let

p'(x,0) = uj(x, ty+0o), fori=1m,

multiply the it" equation of the poblem (1.2) by 5 a“’

OuiOu; _  Bu, .~ Oui,
ot ot "ot -

and integrate over €2 we get:
aui\? ou ou;
/Q <8t/> dx — d; 3 'Au,dx—/ﬂat'f,-(ul,uz ..... Um) dx,

[

as

ot

ou;
= d; (g, o, . .., dx,
. at / ot i (U1, uo Um) dx

intégrating result over (tp, +00), we have:

/+oo H aul
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thus % € L2 (to, +00, L2 (2)), Vo € ]-1, 1] we get:

pl(x,0) —ui(x,ty) = ui(x, th+0)—ui(x, ty)

thto ou;
= t)dt
/tn " (1)

b+l 5y
< / 6—’(xt)dtbyreasonof(tn—1<tn o<1 th+to<t,+1)
th—1
1 1 1 2 %
th+ 2 th+
< (/ (1)2dt> (/ (8”’(x t)) ) ,
th—1 th—1 0
1
th+1 2 2
< ﬁ(/ (5t 0n) dt) ,
th—1

as follows

n 5 th+1 8u, 2
17 (%, 0) — i (x, ta)[? = 2 / % 1)) ot

th—1
integrating the latter inequality 2 yields

/ 107 (%, 0) — uy (x, t)|% dx < 2/ /:"H (8“' t)>2dtdx,

we pass to the limit as n — oo, we have:

th+1 au 2
n — 5112 <2 i _
lpi (x,0) — uj IILQ(Q) < 2n||_r>noo/ /t < (x, t)> dtdx =0,

2
1o (x, 0) = t7 I L2(q) —0.

SO

As a result, we will all 0 € ]—1, 1],

Ip7 (x,0) = U7 [ 2y 0. hence sup_llpf (o) = v Slia) 2.0,
—1l<o<

and by the same mode are obtained:

2 L
sup ||p? (x,0) — u? — 0, fori=1,m.
Cica<l H i ( ) i HLZ(Q) oo

Also, we can have:
n - s 2 N g
_1s<uC£)<1 VPl (x,0) = Vi1 e 0 fori=1m,
through positivity and boundedness of the solution was:
0<u(x th+o) <M,

remarkably f; € C*° (R"), we can conclude, using Lebesgue's theorem, that

filp1(x,0),p2(x,0),..., pm(x,0)) = fi(u3, U3, ..., us) in L2(Q x (—1,1)) weak.
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Now, let g; € C' () such that o; = 0 on 89 where i = I, m, and let v € C*(Q) such that
suppy C [-1,1],

/1')'(5)ds:1 and v (—=1)=7v(1).
1

We multiply the i equation of problem (1.2) by 7y (t — t,,) ; and integrate over Q x (t, — 1, t, + 1),

we obtain
ttn”jll Jov (t—ta) Q,‘%dth —d fttn”jll Jov (t = ta) 0iAujdxdt (4.2)
= ttn”jll Jov (t—ta)0ifi (U, 2, ..., Um) dxdt.
Forecast the integral fttn”jllfy (t —tn) Q,%dt by part, we find
tnt1 B, tnt1
/ Y (t=tn) oy, dt = —/ v (t = ty) giui (x, t) dt, (4.5)
tp—1 t th—1
to appraise fQ'y (t — t,) 0iAujdx applying Green's formula
6u,-
v (t — t) @iAujdx = Y (t—tn) iz —do— | Vy(t—ts)eVuidx
Q oQ on Q
= / Vo (t —ty) 0iVujdx,
Q
extremely
/ v (t—ty) 0iAuidx = —/ Vy (t —t,) 0iVujdx, (4.6)
Q Q

injected (4.5) and (4.6) in (4.4) is accessed

th+1 th+1
—/ /fy’(t—tn) o1t (x. 1) dxdt—i—d,-/ /V'y(t—tn)g,-Vu,-dxdt (4.7)
t, Q t Q

n—1 n—1

tht+1
—I—/ /’Y(t—tn)gjﬂ(l,l]_,UQ ..... Um) dxdt =0 for i=1,m.
th—1 JQ

By making the following change of variable c =t — t, — do = dt
. t=t,—1 o=-—1
if —

t=t,+1 c=1
accordingly the integral (4.7) becomes

+1 +1
/ / ¥ (6) 0" (x. ) dxdo — d, / / V(o) 01Vp" (x, o) dxdo
—1 JQ -1 JQ

+1
/_1 /Q'y (o) 0ifi (p1(x,0),p2(x,0),..., pm(x,0))dxdo =0, fori=1,m. (4.8)
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Applying Lesbegue’s theorem we gain: for i =1, m

+1 +1
lim / / v (o) 0ip! (x,0) dxdt = / / v (o) oju? dxdo
n—eo 1 Jo -1 JQ
+1

= / fy’(cr)dcr/g,-u,-sdx
-1 Q

= 'y(a)|ﬂ /Q oiu?dx = 0 by virtue of y (1) =y (-1),

from inequality (4.8), we make: for i =1, m

—d,-/VQ,-Vu,-S—k/Q,-f,-(uf,ug,...,uf;,) dx =0,
Q Q

Which is the variational formulation of (4.2), hence w = .
Finally, combining (4.2) with (4.1) yields

/Q;&dx
Q1> ¢
i=1

m
/Zu,odx,
Q-
m
/Zu,odx,
Q-

Zé,—zm/Q;u,dx,

i=1
the proof of the theorem is complete.

O

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] S. Abdelmalek, S. Kouachi, Proof of Existence of Global Solutions Form-Component Reaction—Diffusion Systems
With Mixed Boundary Conditions via the Lyapunov Functional Method, J. Phys. A: Math. Theor. 40 (2007),

12335-12350. https://doi.org/10.1088/1751-8113/40/41/005.

[2] N.D. Alikakos, LP-Bounds of Solutions of Reaction-Diffusion Equations, Commun. Part. Differ. Equ. 4 (1979),

827-868. https://doi.org/10.1080/03605307908820113.

[3] J.D. Avrin, Qualitative Theory for a Model of Laminar Flames With Arbitrary Nonnegative Initial Data, J. Differ.

Equ. 84 (1990), 290-308. https://doi.org/10.1016/0022-0396(90)90080-9.

[4] A. Barabanova, On the Global Existence of Solutions of a Reaction Diffusion Equation With Exponential Nonlinearity,

Proc. Amer. Math. Soc. 122 (1994), 827-831.

[5] W. Bouarifi, N.E. Alaa, S. Mesbahi, Global Existence of Weak Solutions for Parabolic Triangular Reaction Diffusion

Systems Applied to a Climate Model, Ann. Univ. Craiova, Math. Computer Sci. Ser. 42 (2015), 80-97.

[6] M.G. Crandall, A. Pazy, L. Tartar, Remarks on Generators of Analytic Semigroups, Israel J. Math. 32 (1979),

363-374. https://doi.org/10.1007/bf02760465.
[7] P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill, New York, (1970).
[8] S.R. De Groot, P. Mazur, Nonequilibrium Thermodynamics, North-Holland, Amsterdam, (1962).


https://doi.org/10.1088/1751-8113/40/41/005
https://doi.org/10.1080/03605307908820113
https://doi.org/10.1016/0022-0396(90)90080-9
https://doi.org/10.1007/bf02760465

12

Int. J. Anal. Appl. (2023), 21:37

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

A. Haraux, M. Kirane, Estimations C! Pour des Problémes Paraboliques Semi-lineaires, Ann. Fac. Sci. Toulouse
Math. 5 (1983), 265-280.

A. Haraux, A. Youkana, On a Result of K. Masuda Concerning Reaction-Diffusion Equations, Tohoku Math. J. 40
(1988), 159-163. https://doi.org/10.2748/tmj/1178228084

M. Kirane, Global Bounds and Asysmptotics for a System of Reaction-Diffusion Equations, J. Math. Anal. Appl.
138 (1989), 328-342.

S. Kouachi, Global Existence of Solutions to Reaction Diffusion Systems via a Lyapunov Functional, Electron. J.
Differ. Equ. 2001 (2001), 68.

S. Kouachi, A. Youkana, Global existence and asymptotics for a class of reaction diffusion systems, Bull. Polish
Acad. Sci. Math. 49 (2001).

K. Masuda, On the Global Existence and Asymptotic Behavior of Solutions of Reaction-Diffusion Equations,
Hokkaido Math. J. 12 (1983), 360-370. https://doi.org/10.14492/hokmj/1470081012

M. Mebarki, A. Moumeni, Global Solution of System Reaction Diffusion With Full Matrix, Glob. J. Math. Anal.
(2015), 04-25.

A. Moumeni, M. Dehimi, Global Existence Solutions of a System for Reaction Diffusion, Int. J. Math. Arch. 4
(2013), 122-129.

B. Rebiai, S. Benachour, Global Classical Solutions for Reaction—diffusion Systems With Nonlinearities of Exponen-
tial Growth, J. Evol. Equ. 10 (2010), 511-527. https://doi.org/10.1007/s00028-010-0059-x

F. Rothe, Global Existence of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin,
(1984).

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, Springer, New York,
(1983).


https://doi.org/10.2748/tmj/1178228084
https://doi.org/10.14492/hokmj/1470081012
https://doi.org/10.1007/s00028-010-0059-x

	1. Introduction
	2. Notations and Preliminary
	3. The Main Result
	4. Proof of the Main Result (Theorem 3.1)
	References

