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Abstract. The conjugate gradient and Quasi-Newton methods have advantages and drawbacks, as

although quasi-Newton algorithm has more rapid convergence than conjugate gradient, they require

more storage compared to conjugate gradient algorithms. In 1976, Buckley designed a method that

combines the CG method with QN updates, which is better than that observed for conjugate gradient

algorithms but not as good as the quasi-Newton approach. This type of method is called the pre-

conditioned conjugate gradient (PCG) method. In this paper, we introduce two new preconditioned

conjugate gradient (PCG) methods that combine conjugate gradient with a new update of quasi-

Newton methods. The new quasi-Newton method satisfied the positive define, and the direction of

the new preconditioned conjugate gradient is descent direction. In numerical results, it is showing

the new preconditioned conjugate gradient method is more effective on several high-dimension test

problems than standard preconditioning.

1. Introduction

There are many types of numerical methods to find an optimum or near-optimum solution to one or

more dimensional unconstrained optimization problems, which include the cubic interpolation, golden

ratio gradient descent method, the Newton and quasi-Newton methods. The most widely used for

solving large-scale problems in fields such as technology, sciences, and economics is the quasi- Newton

(QN) or variable metric (VM) [4], methods because of its effectiveness and stability.

Consider the unconstrained minimization problem as follows:
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min{f (x) : x ∈ Rn}, (1.1)

where f (x) is twice continuously differentiable function over Rn, the essential idea of quasi-Newton

methods is to use an approximation of the inverse Hessian, and build up an approximation of the

inverse Hessian is often used information about the gradient ∇f (xk) from some or all of the previous

iterates xk . Quasi-Newton methods, instead of the true inverse Hessian, are observed as the most

complicated for solving(1.1). Earliest quasi- Newton method was proposed by William C. Davidon in

1959 [3] and later developed by Fletcher and Powell (1963) [6].The updating formula of this method

generates a symmetric positive matrix of the form Hk+1 = Hk +Q , where Q is a correction matrix.

Then a general quasi-Newton method is started with an initial point x0 a first approximation of the

minimum point, and a matrix H0 (usually H0 = I ,I is a symmetric positive definite matrix), solving

the following linear equation to compute search direction

dk +Hk+1gk = 0 (1.2)

and find the next point xk+1 by searching along a decent direction dk such that dTk gk ≤ 0 , using the

following equation:

xk+1 = xk + αkdk . (1.3)

To find the step length αk must apply an appropriate line search strategy along the search direction

dk , such that the following Wolfe–Powell [10] conditions are satisfied:

f (xk + αkdk)− f (xk) ≤ c1αk∇f Tk dk , (1.4)

∇f (xk + αkdk)T dk ≥ c2∇f Tk dk , (1.5)

with 0 < c1 < c2 < 1. Select a new symmetric positive definite matrix Hk+1 which satisfy the

following original quasi-Newton equation, [5]

Hk+1yk = vk (1.6)

xk and xk+1 two points are given; describe gk = ∇f (xk) and gk+1 = ∇f (xk+1) , so vk = xk+1−xk
and yk = gk+1 − gk .
Quasi-Newton methods use the correction matrix Qk rank one or rank two matrix. In each update,

the iterate matrix Hk+1 = Hk+1+Qk ,should satisfy the quasi-Newton condition (1.6) Now substitute

the correction matrix by

Qk = auu
T + bwwT , (1.7)

where a andbare scalars while uand w are vectors.

The quantities auuT and bwwT are symmetric matrices; when b = 0 quasi-Newton methods are

using rank-one updates, but if b 6= 0 then quasi-Newton methods are using rank two updates.
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The general type of QN updates which was proposed by Broyden [4] and satisfy the ordinary quasi-

Newton equation is:

Hk+1 = Hk −
Hkyky

T
k Hk

yTk Hkyk
+
vkv

T
k

vTk yk
+ ϕk(y

T
k Hkyk)RkR

T
k , (1.8)

where Rk =
vk
vTk yk
− Hkyk

yTk Hkyk
, and ϕk = ϕ (θk) =

1−θk
1+θkδkµk

with δk =
yTk Hkyk
vky

T
k

and µk =
vTk Hkvk
vTk yk

.

Several well known updates Hk+1 defined in (1.8) by choosing different values of θk :- when;

θk =
vTk yk

vTk yk−v
T
k Hkvk

, we get the symmetric rank-one formula(SR1):

HSR1k+1 = Hk +
(vk − Hkyk)(vk − Hkyk)

T

(vk − Hkyk)
T yk

. (1.9)

For θk = 1, we get the DFP formula due to Davidon, Fletcher, and Powell.

HDFPk+1 = Hk −
Hkyky

T
k Hk

yTk Hkyk
+
vkv

T
k

vTk yk
. (1.10)

For θk = 0, we get the BFGS formula due to Broyden, Fletcher, Goldfard, and Shanno.

HBFGSk+1 = Hk + (1 +
yTKHkyk

vTk yk
)
vkv

T
k

vTk yk
−
Hkykv

T
k + vky

T

k Hk

yTKHkyk
. (1.11)

In the next section, we propose a modified BFGS method and study the properties of it. we present

a new update of Hk+1 which satisfy the quasi-Newton condition.

2. A Modified BFGS Method (MBFGS)

In this section, a new class of quasi Newton updates for solving unconstrained non linear optimization

problems is proposed. The idea of new updates is using the Powell equation [10] which is define as:

ỹk = (1− θ)Gvk + θyk (2.1)

Where G is a hessian matrix which is a symmetric matrix of second partial derivatives of function and

θ in(0, 1). Now, we suppose that

Gvk =
yk
ρ
. (2.2)

Let, ρ = 2
√
ω

||vk ||(1 + ||xk+1||), ω is a machine accuracy, and ||.|| ≥ 0 is the Euclidean norm of vectors.

so, we obtain

Gvk = ||vk ||
yk

2
√
ω(1 + ||xk+1||)

. (2.3)

We replace Gvk in (2.1) by (2.3), and getting the following

ỹk = (1− θ)
(
||vk ||

yk
2
√
ω(1 + ||xk+1||)

)
+ θyk . (2.4)

For the new updated , we have investigated a new expression for the QN-condition via ỹk put in (1.6)

instead of yk , and get

Hk+1ỹk = vk . (2.5)
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A more flexible is gotten when the correction matrix Qk is a rank two , hence the formula Hk+1 =

Hk +Q can be written as,

Hk+1 = Hk + auu
T + bwwT . (2.6)

In 1970, Broyden, Fletcher, Goldfarb, and Shanno suggested an alternative method called the BFGS

method, which is the most popular type of symmetric rank-two method for large-scale optimization

and belongs to a group of quasi-Newton methods, It is a local search method. Now, we can drive a

modified of HBFGSk+1 depend on (2.5) to get HMBFGSk+1 multiplying (2.6) by ỹk to obtain

Hk+1ỹk = Hk ỹk + auu
T ỹk + bww

T ỹk . (2.7)

The vectors u and v are no longer uniquely determined. In view of (2.7), it is adequate choose, u = vk
and w = Hk ỹk . Then we obtain

Hk+1ỹk = Hk ỹk + avkv
T
k ỹk + bHk ỹk(Hkyk)

T ỹk , (2.8)

which implies, if auT ỹk = 1 and bwT ỹk = −1, thus determine a and b such that a = 1
uT ỹk

= 1
vTk ỹk

and

b = 1
ỹTk Hk ỹk

. Substituting the value of a, b, u and v to the updating formula (2.8), thus we get a new

updated of QN-method is HMBFGSk+1

HMBFGSk+1 = Hk +

[
1 +

ỹTk Hk ỹk

vTk ỹk

]
vkv

T
k

vTk ỹk
−
Hk ỹkv

T
k + vk ỹ

T

k Hk

ỹTk Hk ỹk
. (2.9)

We can rewrite (2.9) as

HMBFGSk+1 =

[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
+
vkv

T
k

vTk ỹk
. (2.10)

3. Algorithm of Modified BFGS

• Step 0: Start with initial point of solution x0 ∈ Rn, k = 0, set ε > 0, n ∈ Z,and select a real

symmetric positive definiteH0 = I , I is an n × n identity matrix.

• Step 1: Test if ||gk || < ε then stop, else dk = −Hkgk = −Hk∇f (xk) and go to step (2)

• Step 2: Using line search procedure to determine the size step αk = argminf (xk + αkdk)

such that rules (1.4) and (1.5) are satisfied

• Step 3: Calculate xk+1 = xk + αkdk .

• Step 4: check , if ||gk+1|| < ε then stop and xk+1 is optimal point.otherwise calculate

dk+1 = −Hk+1gk+1, Hk+1 is defined in (2.10) and go to step (5).

• Step 5: set k = k + 1. and go to step 1.

4. Hereditary Property and Positive Definiteness of The MBFGS-Method

In this section, we prove that the new modification of BFGS is satisfied both properties the hereditary

Property (secant condition ) and preserves positive definite Hk+1 matrices.
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Theorem 4.1. If the new method is applied to minimize a quadratic function with positive definite

Hessian G = GT , then the (1.6) is hold i.e HMBFGSk+1 ỹk = vk for all 0 ≤ k .

Proof. Multiply both sides of (2.10) by ỹk from right , so we have

HMBFGSk+1 ỹk = (

[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
+
vkv

T
k

vTk ỹk
)ỹk , (4.1)

by using a basic algebraic operations we found the (4.1) becomes in following form:

HMBFGSk+1 ỹk = Hk ỹ −
Hk ỹkv

T
k ỹ

ỹTk vk
−
vk ỹ

T
k Hk ỹk

ỹTk vk
+
vk ỹ

T
k Hk ỹ v

T
k ỹk

(ỹTk vk)
2

+
vkv

T
k

vTk ỹk
ỹk . (4.2)

It is knowing that the vTk ỹk is scalar and ỹTk vk = v
T
k ỹk , so (4.2) becomes

HMBFGSk+1 ỹk = vk . (4.3)

�

Theorem 4.2. We first demonstrate that if HMBFGSk is positive definite, then HMBFGSk+1 is also positive

definite.

Proof. To ensure positive-definiteness ofHMBFGSk+1 assumingHMBFGSk is positive definite. Typically the

algorithm starts with HMBFGS0 = I or a similar diagonal positive-definite matrix. We only need to

check that wTHMBFGSk+1 w > 0 , for any w 6= 0 andw ∈ Rn, we have

wTHMBFGSk+1 w = wT (

[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
+
vkv

T
k

vTk ỹk
)w, (4.4)

wTHMBFGSk+1 w = wT
[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
w + wT

vkv
T
k

vTk ỹk
w. (4.5)

Let zk = w(I −
vk ỹ

T
k

ỹTk vk
) and zk 6= 0, so rewrite (4.5) as:

wTHMBFGSk+1 w = zTHkz +
(wT vk)

2

vTk ỹk
. (4.6)

It is clear the first term of (4.6) zTHkz > 0, because Hk is positive defined. The second (w
T vk)

2

vTk ỹk
,

(wT vk)
2 > 0, now we need to prove vTk ỹk > 0, whenever

vTk ỹk = v
T
k ((1− θ)

(
||vk ||

yk
2
√
ω(1 + ||xk+1||)

)
+ θyk). (4.7)

Let ξ =
(

||vk ||
2
√
ω(1+||xk+1||)

)
, and ξ > 0.

So,

vTk ỹk = v
T
k ((1− θ)(ξy k + θyk)) (4.8)

Suppose µ = (1− θ)(ξ + θ), µ > 0, therefore

vTk ỹk = (µv
T
k yk), (4.9)
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vTk ỹk = µ(v
T
k gk+1 − vTk gk). (4.10)

In case of, exact line search then we have vTk gk+1 = 0, and v
T
k gk = −αkgTk Hkgk , then (4.10)

becomes

vTk ỹk = µαkg
T
k Hkgk . (4.11)

Since Hk is positive, means gTk Hkgk > 0. There fore (4.11) is positive. In case, inexact line search,

vTk gk+1 6= 0, we rewrite(4.10) as:

vTk ỹk = µv
T
k yk = µαkd

T
k yk . (4.12)

Noteworthy that, from second Wolf’s condition we get, dTk yk = d
T
k (gk+1−gk) > ( c2 − 1)dTk gk

and ( c2 − 1) dTk gk > 0, so dTk yk > 0, it is clear µαk > 0, thus, we see vTk ỹk > 0. Since

wTHMBFGSk+1 w > 0 w 6= 0, (4.13)

therefor, HMBFGSk+1 is positive definite. �

Theorem 4.3. Let xk+1 anddk+1 are two sequences generated by new algorithm 3, with line search

under Wolf’s conditions (1.4) and (1.5), then the new direction dk+1 is satisfied the sufficient descent

condition.

dTk+1gk+1 ≤ 0. (4.14)

Proof. Form (1.2) and(2.10) we have,

dk+1 = −Hk+1gk+1, (4.15)

HMBFGSk+1 =

[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
+
vkv

T
k

vTk ỹk
. (4.16)

Multiply both sides of (4.15) by gTk+1

gTk+1dk+1 = −gTk+1(
[
I −

vk ỹ
T
k

ỹTk vk

]
Hk

[
I −

ỹkv
T
k

ỹTk vk

]
+
vkv

T
k

vTk ỹk
)gk+1. (4.17)

It is clear HMBFGSk+1 is positive defined and gk+1is a vector, therefore

gTk+1(Hk+1)gk+1 > 0. (4.18)

This implies

dTk+1gk+1 ≤ 0. (4.19)

�
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5. New Preconditioned Conjugate Gradient PCG-Method

The Conjugate Gradient (CG) method is a attractive method for minimizing a large unconstrained

nonlinear problems, because it is using the first derivative information to generate search directions, and

the QN- method faster than CG- method but need more area computer store for the reason that the

QN- methods generated a symmetric positive defined matrix in each iteration which needed a (n(n+

1)/2) location of store. So in 1978, Buckley suggested a method combining the conjugate gradient

with QN-method called (PCG-method )the aim of this suggestion is accelerating the convergence of

conjugate gradient and reduce amount of storage in QN-method. The idea of PCG-method is based

on combining by using the matrix of QN in the conjugate gradient algorithm which is corresponding

to solve a problem in the transformed space.

5.1. A New PCG Method: let HMBFGSk+1 is a preconditioned matrix and it is a symmetric positive

definite, by using Cholesky decomposition of HMBFGSk+1 , i.e there exists a lower triangular matrix L̃ such

that HMBFGSk+1 = L̃L̃T . Assume f (x) be a strictly convex quadratic function and f (x) can be written

as:

f (x) =
1

2
xTGx + xT b + c, (5.1)

such that, gradient of f (x) is

∇f (x) = g(x) = Gx + b, (5.2)

f (L̃z) =
1

2
(L̃z)TG(L̃z) + (L̃z)T b + c. (5.3)

Let f (L̃z) = h(z), so,

h(z) =
1

2
(L̃z)TG(L̃z) + (L̃z)T b + c. (5.4)

The first derivative of h(z) is

∇h(z) = L̃zTGL̃z + L̃T b, (5.5)

∇h(z) = L̃T (GL̃z + b), (5.6)

gz = L̃T gx . (5.7)

Now, we set

zk+1 = zk + αkd
z
k . (5.8)

Multiplication both sides of(5.8) by L̃, we get

L̃zk+1 = L̃zk + αk L̃d
z
k . (5.9)



8 Int. J. Anal. Appl. (2023), 21:31

We have x = L̃z , so (5.9) becomes:

xk+1 = xk + αk L̃d
z
k . (5.10)

From(5.10), we noted L̃dzk = d
x
k , since d

z
k = L̃

−1dxk .

Set

y zk = g
z+1
k − gzk , (5.11)

where, y z+1k and y zk are the gradients of h(z) at points zk+1 and zk respectively, since from (5.7),

(5.11) becomes as follows:

y zk = L̃
T gk+1k − L̃T gxk . (5.12)

Now consider applying the modification of Parry conjugate gradient method βMPrreyk =
gTk+1(ỹk−vk)

dTk ỹk

[9], to the objective function h(z),

dzk+1 = −gzk+1 +
gz

T

k+1(ỹ
z
k − v zk )

dz
T

k ỹ zk
dzk . (5.13)

Using (5.7), (5.11) and (5.12) in (5.13) and multiply by L̃, we get:

L̃L̃−1dxk+1 = −L̃L̃T gxk+1 +
gx

T

k+1L̃L̃
T (ỹ xk − v xk )
dx

T

k ỹ x
L̃L̃−1dxk , (5.14)

dxk+1 = −HMBFGSk+1 gxk+1 +
gx

T

k+1H
MBFGS
k+1 (ỹ xk − v xk )
dx

T

k ỹ x
dxk . (5.15)

(5.15) is our preconditioned conjugate method which is require less storage and computation time

and has a quadratic termination property.

5.2. Algorithm of the New PCG-Method.

• Step 0: let k = 0, x0 in Rn is an initial point of solution, set ε > 0, n ∈ Z,and select a real

symmetric positive definite matrix H0 = I, I is an n × n identity matrix and ω is accuracy of

computer.

• Step 1: test a criterion for stopping, if ||gk || < ε then stop else go to step 2.

• Step 2: dk = −Hk∇f (xk) = −Hkgk and continuous.

• Step 3:using line search procedure to determine the size stepαk , αk = argminf (xk + αkdk)

such that rules (1.4) and (1.5) are satisfied.

• Step 4: calculate xk+1 = xk + αkdk ,and go to next step.

• Step 5: check, if ||gk+1|| < ε then stop and xk+1 is optimal point, otherwise calculate

vk = xk+1−xk , yk = gk+1−gk and find ỹ by ỹ = (1−θ) ‖vk‖ yk
2
√
ω(1+‖xk+1‖)

+θyk , θ ∈ (0, 1),
ω is error of machine and go.

• Step 6: find dk+1 = −HMBFGSk+1 gk+1 +
gTk+1H

MBFGS
k+1 (ỹk−vk)
dTk ỹ

dk , and HMBFGSk+1 is defined as

HMBFGSk+1 = Hk +
[
1 +

ỹTk Hk ỹk
vTk ỹk

]
vkv

T
k

vTk ỹk
− Hk ỹkv

T
k +vk ỹ

T

k
Hk

ỹTk Hk ỹk
then go to step (7).
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• Step 7: If gTk+1gk+1 ≤ −0.8dTk+1gk+1, then go to step 2.

else k = k + 1 and go to step 3.

Theorem 5.1. Let the sequences of xk and dk are generated by algorithm of the New PCG-Method

5.2 then the descent property of a new PCG- method is descent condition:

dTk+1gk+1 < 0. (5.16)

Proof. We prove by induction, at k = 0, d0 = −H0g0, so we have

dT0 g0 ≤ −gT0 H0g0, (5.17)

where H0 = I, g0 6= 0 , and −gT0 H0g0 < 0.
Now we assume that the conclusion (5.16) holds for k ≥ 0, means, gTk dk ≤ γ ‖gk‖

2, need to prove

it is true at k + 1.

Let

dk+1 = −HMBFGSk+1 gk+1 +
gTk+1H

MBFGS
k+1 (ỹkk − vk)
dTk ỹk

dk . (5.18)

Multiply both sides of (5.18) by gk+1 we get,

dTk+1gk+1 = −gTk+1HMBFGSk+1 gk+1 +
gTk+1H

MBFGS
k+1 (ỹk − vk)
dTk ỹk

dTk gk+1. (5.19)

Thus,

dTk+1gk+1 = −gTk+1HMBFGSk+1 gk+1 +
gTk+1H

MBFGS
k+1 (ỹk)

dTk ỹk
dTk gk+1 −

gTk+1H
MBFGS
k+1 (vk)

dTk ỹk
dTk gk+1. (5.20)

We notice that if we use an exact line search then, we have dTk gk+1 = 0 and also HMBFGSk+1 is

positive symmetric definite from theorem 4.2, gTk+1H
MBFGS
k+1 gk+1 ≥ 0 for all, gk+1 6= 0, therefore

dTk+1gk+1 < 0. In case inexact line search dTk gk+1 6= 0, from (5.19) , we get

dTk+1gk+1 = −
gTk+1H

MBFGS
k+1 vk

dTk ỹ
dTk gk+1, (5.21)

ỹ = (1− θ) ‖vk‖ yk
2
√
ω(1+‖xk+1‖)

+ θyk .

We need to show dTk ỹ > 0, means dTk ỹ = d
T
k ((1 − θ) ‖vk‖

yk
2
√
ω(1+‖xk+1‖)

+ θyk) > 0. It is noted

that the dTk yk = d
T
k (gk+1 − gk) > (δ2 − 1)dTk gk ,dTk vk = ‖dk‖

2αk , and θ ∈ (0, 1)

dTk+1gk+1 = −
gTk+1H

MBFGS
k+1 gk+1‖dk‖2αk

dTk ỹ
. (5.22)

Let τ =
gTk+1H

MBFGS
k+1 gk+1‖dk‖2αk

dTk ỹ
, we see τ is positive, then (5.22) becomes:

dTk+1gk+1 < 0. (5.23)

�
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6. Numerical Experiments and Discussions

It is clearly that the theoretical evidence is not sufficient to demonstrate the effectiveness or ro-

bustness of any iterative methods. Therefore, researchers turn to study the numerical results of

methods by evaluate the performance method on a group of test problems and evaluation the number

of iterations or Computation time (CPU-time).

In this section, we present the results of numerical experiments for our new suggestion to solve

different nonlinear test problems of large size. In practice, the construction sequence of preconditions

is based on well-known suggestion method modified BFGS techniques in order to keep under control

the amount of memory. We use FORTRAN95 LANGUAGE to write all codes and the run is stopping

when this inequality ||gk+1|| < 10−5 is satisfied. For compare, we used the well-known nonlinear

problems with dimension ranging between 4 to 5000, [1]. All algorithms use exactly the same method

(cubic fit method ) to find the step length αk the same implementation of the Wolfe line search

conditions (1.4) and (1.5) with c1 = 0.001 andc2 = 0.1.

According to the Table1, it is not difficult to show that the performance of new PCG -method is

better than stander PCG method when using Hestain and Stiefen formula (βHSk =
gTk+1yk

dTk yk
) [12], and

the restart gTk+1gk+1 ≤ −0.8dTk+1gk+1.
Table 2 results illustrating the behavior of new PCG -method and standard PCG methods when taken

the Perry suggestion βperryk =
gTk+1(yk−vk)

dTk yk
)for coefficient of conjugate gradient method [9] under the

restart |gTk+1gk | > 0.2gTk+1gk+1, for more analyse of the numerical result we use performance profile

proposed by Dolan and More [14].

According to the rule of this performance profile, we describe the performance curves based on

Table 1 and Table 2 as in Figures 1–4. Based on the four figures, we see that the new PCG method

is superior to the standard PCG method under the unconstrained problems in Tables 1 and 2.
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Table 1. Comparing performance of βHSk − BFGS and βHSk −MBFGS

βHSk − BFGS βHSk −MBFGS
Test Function N NOI-NOF NOI-NOF

4 21-86 20-72
100 67-179 39-109

Powell 500 48-142 44-121
(-3,-1,0,1;...) 1000 47-142 45-126

3000 51-144 37-123
5000 40-119 40-119

4 25-87 18-68
100 31-99 18-71

Miele 500 31-103 22-86
(1,2,2,2;...) 1000 38-117 23-88

3000 34-106 23-91
5000 35-104 29-89

4 36-269 12-79
100 42-341 23-167

Cantral 500 48-416 36-311
(1,2,2,2;...) 1000 51-451 26-217

3000 55-506 41-404
5000 57-532 32-281

4 7-18 8-17
100 72-145 58-117

Wolf 500 82-165 63-127
(-1;...) 1000 96-194 66-133

3000 181-388 108-227
5000 182-382 107-236

4 19-58 18-52
100 70-167 36-91

cubic 500 53-124 42-101
(-1.2,1;...) 1000 71-167 48-112

3000 71-168 49-177
5000 67-163 55-127

4 24-73 23-61
100 74-177 56-134

NON-DIAGONAL 500 82-205 63-153
(-1;...) 1000 85-218 61-147

3000 111-335 69-174
5000 100-275 77-194

4 8-26 8-24
100 8-26 8-24

Shallow 500 8-26 8-25
(-2,-2;...) 1000 8-26 8-25

3000 9-28 10-29
5000 10-30 10-29

4 32-92 34-85
100 235-6827 220-538

Rosen 500 578-1537 462-1133
(-1.2,1;...) 1000 864-2150 747-2014

3000 1061-2667 910-2434
5000 1428-3577 891-2357

4 9-22 9-22
100 10-25 10-25

Beal 500 10-25 10-25
(0,0;..) 1000 10-25 10-25

3000 10-25 10-25
5000 10-25 10-25

4 9-24 9-23
100 218-537 209-495

Dixon 500 210-509 193-541
(-1;..) 1000 199-490 225-541

3000 252-590 195-461
5000 204-529 175-423
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Table 2. Comparing performance profiles of {βperryk −MBFGS} and {βperryk − BFGS}

βperryk − BFGS βperryk −MBFGS
Test Function N NOI-NOF NOI-NOF

4 124-294 36-102
100 529-1152 40-121

Powell 500 119-285 40-121
(-3,-1,0,1;...) 1000 289-1684 40-121

3000 152-379 40-121
5000 150-381 40-121

4 36-1515 19-85
100 274-2216 23-137

Cantral 500 365-2657 24-152
(1,2,2,2;...) 1000 564-2854 24-152

3000 610-3200 28-213
5000 330-3350 32-281

4 14-59 8-45
100 157-519 52-190

OSP 500 417-1170 115-352
(-1;...) 1000 523-1421 174-532

3000 1006-2692 303-965
5000 1356-3637 380-1221

4 26-61 22-91
100 26-61 23-55

Wood 500 36-81 23-55
(-3,-1,-3,-1;...) 1000 36-81 23-55

3000 36-81 23-55
5000 36-81 23-55

4 31-80 30-75
100 47-113 44-107

NON-DIAGONAL 500 49-119 49-112
(-1;...) 1000 50-122 61-120

3000 50-122 49-119
5000 50-122 50-120

4 39-104 39-102
100 41-109 39-104

Rosen 500 38-103 38-103
(-1;...) 1000 39-105 38-103

3000 40-105 38-105
5000 40-104 40-103

4 3-11 3-11
100 20-107 14-81

Sum 500 19- 92 21-115
(2;...) 1000 31-172 23-117

3000 63-351 32-179
5000 79-425 42-222

4 22-60 14-46
100 29-76 16-51

cubic 500 29-75 22-62
(-1.2,1;...) 1000 31-82 22-64

3000 29-74 24-68
5000 32-83 24-69

4 5-14 5-14
100 6-16 6-16

Edger 500 6-16 6-16
(-1;..) 1000 6-16 6-16

3000 6-16 6-16
5000 6-16 6-16
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7. Conclusion

The nonlinear quasi-Newton method is widely used in unconstrained optimization. In this paper, we

suggest new updates to the quasi-Newton method for solving unconstrained optimization problems.

We use this new quasi-Newton to introduce the new PCG method. The analysis and implementation

of the descent property with the Wolfe line search of the modified method are studied. The numerical

results show that the proposed formula for the combined quasi-Newton conjugate gradient method is

very encouraging for general, unconstrained optimizations.
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