Title: Fuzzy Stability of Generalized Square Root Functional Equation in Several Variables: A Fixed Point Approach
Author(s): K. Ravi, B.V. Senthil Kumar
Pages: 10-19
Cite as:
K. Ravi, B.V. Senthil Kumar, Fuzzy Stability of Generalized Square Root Functional Equation in Several Variables: A Fixed Point Approach, Int. J. Anal. Appl., 5 (1) (2014), 10-19.

Abstract


In this paper, we investigate the generalized Hyers-Ulam stability of the generalized square root functional equation in several variables in fuzzy Banach spaces, by applying the fixed point method.

Full Text: PDF

 

References


  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989. Google Scholar

  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. Google Scholar

  3. C. Baak and M.S. Moslehian, On the stability of J ∗-homomorphisms, Nonlinear AnalysisTMA 63 (2005), 42-48. Google Scholar

  4. T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3) (2003), 687-705. Google Scholar

  5. T. Bag and S.K. Samanta, Fuzzy bounded linear operators,, Fuzzy Sets and Syst.,151 (2005), 513-547. Google Scholar

  6. R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci., 53 (1991), 185-190. Google Scholar

  7. L. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4(1), Art. ID 4 (2003). Google Scholar

  8. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52. Google Scholar

  9. L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Appl., 2008, Art. ID 749392 (2008). Google Scholar

  10. I.S. Chang and H.M. Kim, On the Hyers-Ulam stability of quadratic functional equations, J. Ineq. Appl. Math., 33 (2002), 1-12. Google Scholar

  11. I.S. Chang and Y.S. Jung, Stability of functional equations deriving from cubic and quadratic functions, J. Math. Anal. Appl., 283 (2003), 491-500. Google Scholar

  12. S.C. Cheng and J.M. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436. Google Scholar

  13. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. Google Scholar

  14. S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. Google Scholar

  15. P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co. New Jersey, Hong Kong, Singapore and London, 2002. Google Scholar

  16. J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. Google Scholar

  17. M. Eshaghi Gordji, S. Zolfaghari, J.M. Rassias and M.B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstract and Applied Analysis, Volume 2009, Article ID 417473 (2009), 1-14. Google Scholar

  18. C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Syst., 48 (1992), 239-248. Google Scholar

  19. G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143-190. Google Scholar

  20. Z. Gajda, On Stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431-434. Google Scholar

  21. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. Google Scholar

  22. N. Ghobadipour and C. Park, Cubic-quartic functional equations in fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1 (2010), 12-21. Google Scholar

  23. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. Google Scholar

  24. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. Google Scholar

  25. G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci., 19 (1996), 219-228. Google Scholar

  26. A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst., 12 (1984), 143-154. Google Scholar

  27. H. Khodaei and Th.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41. Google Scholar

  28. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334. Google Scholar

  29. S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Syst., 63 (1994), 207-217. Google Scholar

  30. D. Mihet and V. Radu On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. Google Scholar

  31. A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Syst., 159 (2008), 730-738. Google Scholar

  32. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias Theorem, Fuzzy Sets and Syst., 159 (2008), 720-729. Google Scholar

  33. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Information Sci., 178 (2008), 3791-3798. Google Scholar

  34. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376. Google Scholar

  35. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Appl., 2007, Art. ID 50175 (2007). Google Scholar

  36. C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Appl., 2008, Art. ID 493751 (2008). Google Scholar

  37. C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy sets and Syst., 160 (2009), 1632-1642. Google Scholar

  38. C. Park, S. Lee and S. Lee, Fuzzy stability of a cubic-quadratic functional equation: A fixed point approach, Korean J. Math., 17(3) (2009), 315-330. Google Scholar

  39. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96. Google Scholar

  40. J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130. Google Scholar

  41. K. Ravi and B.V. Senthil Kumar, Rassias stability of generalized square root functional equation, Int. J. Math. Sci. Engg. Appl., 3(III) (2009), 35-42. Google Scholar

  42. K. Ravi, J.M. Rassias M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J.of Ineq.Pure & Appl. Math., 10 (4) (2009), 1-29. Google Scholar

  43. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Google Scholar

  44. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. Google Scholar

  45. S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley-Interscience, New York, 1964. Google Scholar

  46. J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133 (2003), 389-399. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2021 IJAA, unless otherwise stated.