Title: Properties of Operations for Fuzzy Soft Sets over Fully Up-Semigroups
Author(s): Akarachai Satirad, Aiyared Iampan
Pages: 821-837
Cite as:
Akarachai Satirad, Aiyared Iampan, Properties of Operations for Fuzzy Soft Sets over Fully Up-Semigroups, Int. J. Anal. Appl., 17 (5) (2019), 821-837.

Abstract


The aim of this manuscript is to apply distributivity laws of several fuzzy sets for any fuzzy sets and study distributivity laws with any fuzzy soft sets. We investigate properties of some operations for fuzzy soft sets over fully UP-semigroups and their interrelation with respect to different operations such as “(restricted) union”, “(extended) intersection”, “AND”, and “OR”.

Full Text: PDF

 

References


  1. B. Ahmad and A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst. 2009 (2009), Article ID 586507. Google Scholar

  2. M. A. Ansari, A. Haidar, and A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl. 23 (2018), no. 4, 61. Google Scholar

  3. N. Dokkhamdang, A. Kesorn, and A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 16 (2018), no. 2, 171–190. Google Scholar

  4. T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc. 23 (2017), no. 2, 1–19. Google Scholar

  5. A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017), no. 1, 35–54. Google Scholar

  6. A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl. 38 (2018), no. 2, 297–306. Google Scholar

  7. Y. B. Jun, S. M. Hong, and E. H. Roh, BCI-semigroups, Honam Math. J. 15 (1993), no. 1, 59–64. Google Scholar

  8. Y. B. Jun, K. J. Lee, and C. H. Park, Fuzzy soft set theory applied to BCK/BCI-algebras, Comput. Math. Appl. 59 (2010), 3180–3192. Google Scholar

  9. K. H. Lee, First course on fuzzy theory and applications, Springer-Verlag Berlin Heidelberg, Republic of South Korea, 2005. Google Scholar

  10. P.K. Maji, R. Biswas, and A.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), no. 3, 589–602. Google Scholar

  11. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), 19–31. Google Scholar

  12. C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (2009), no. 1, 54–57. Google Scholar

  13. A. Rehman, S. Abdullah, M. Aslam, and M. S. Kamran, A study on fuzzy soft set and its operations, Ann. Fuzzy Math. Inform. 6 (2013), no. 2, 339–362. Google Scholar

  14. A. Rosenfeld, Fuuzy groups, J. Math, Anal. Appl. 35 (1971), 512–517. Google Scholar

  15. A. Satirad and A. Iampan, Fuzzy sets in fully UP-semigroups, Manuscript accepted for publication in Ital. J. Pure Appl. Math., July 2018. Google Scholar

  16. A. Satirad and A. Iampan, Fuzzy soft sets over fully UP-semigroups, Eur. J. Pure Appl. Math. 12 (2019), no. 2, 294–331. Google Scholar

  17. A. Satirad, P. Mosrijai, and A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci. 14 (2019), no. 2, 403–409. Google Scholar

  18. A. Satirad and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci. 14 (2019), no. 1, 17–25. Google Scholar

  19. J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 12 (2016), no. 6, 739–756. Google Scholar

  20. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. Google Scholar