Title: Hermite-Hadamard Type Inequalities for m-Convex and (α, m)-Convex Stochastic Processes
Author(s): Serap Ozcan
Pages: 793-802
Cite as:
Serap Ozcan, Hermite-Hadamard Type Inequalities for m-Convex and (α, m)-Convex Stochastic Processes, Int. J. Anal. Appl., 17 (5) (2019), 793-802.

Abstract


In this paper, the concepts of m-convex and (α, m)-convex stochastic processes are introduced. Several new inequalities of Hermite-Hadamard type for differentiable m-convex and (α, m)-convex stochastic processes are established. The results obtained in this work are the generalizations of the known results.

Full Text: PDF

 

References


  1. M. K. Bakula, M. E. Ozdemir and J. Pecaric, Hadamard type inequalities for ¨ m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math., 9(4) (2008), Article 96. Google Scholar

  2. M. K. Bakula, J. Pecaric and M. Ribicic, Companion inequalities to Jensen’s inequality for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math., 7(5) (2006), Article 194. Google Scholar

  3. S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95. Google Scholar

  4. L. Gonzalez, N. Merentes and M. Valera-Lopez, Some estimates on the Hermite-Hadamard inequality through convex and quasi-convex stochastic processes, Math. Eterna, 5(5) (2015), 745–767. Google Scholar

  5. I. I¸scan, H. Kadakal and M. Kadakal, Some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)-convex functions, New Trends Math. Sci., 5(2) (2017), 180–185. Google Scholar

  6. D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. Google Scholar

  7. D. Kotrys, Remarks on strongly convex stochastic processes, Aequationes Math., 86 (2013), 91–98. Google Scholar

  8. L. Li and Z. Hao, On Hermite-Hadamard inequality for h-convex stochastic processes, Aequationes Math., 91 (2017), 909–920. Google Scholar

  9. V. G. Mihe¸san, A generalization of the convexity, Seminer on Functional Equations, Approximation and Convexity, ClujNapoca, Romania, 1993. Google Scholar

  10. K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. Google Scholar

  11. N. Okur, I. I¸scan and E. Yuksek Dizdar, Hermite-Hadamard type inequalities for p-convex stochastic processes, Int. J. Optim. Control, Theor. Appl., 9(2) (2019), 148–153. Google Scholar

  12. M. Z. Sarıkaya, H. Yaldız and H. Budak, Some integral inequalities for convex stochastic processes, Acta Math. Univ. Comenianae, 85 (2016), 155–164. Google Scholar

  13. E. Set, M Sardari, M. E. Ozdemir and J. Rooin, On generalizations of the Hadamard inequality for ( ¨ α, m)-convex functions, Kyungpook Math. J., 52 (2012), 307–317. Google Scholar

  14. E. Set, M. Tomar and S. Maden, Hermite-Hadamard type inequalities for s-convex stochastic processes in the second sense, Turk. J. Anal. Numb. Theory, 2(6) (2016), 202–207. Google Scholar

  15. E. Set, M. Z. Sarıkaya and M. Tomar, Hermite-Hadamard type inequalities for coordinates convex stochastic processes, Math. Aeterna, 5(2) (2015), 363–382. Google Scholar

  16. M. Shaked and J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 20 (1988), 427–446. Google Scholar

  17. A. Skowronski, On some properties of J-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. Google Scholar

  18. G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim., Univ. Cluj-Napoca, Cluj-Napoca, Romania, (1985), 329–338. Google Scholar

  19. M. Tomar, E. Set and S. Maden, Hermite-Hadamard type inequalities for log-convex stochastic processes, J. New Theory, 2 (2015), 23–32. Google Scholar