##### Title: Application of Srivastava-Attiya Operator to the Generalization of Mocanu Functions

##### Pages: 674-685

##### Cite as:

Khalida Inayat Noor, Shujaat Ali Shah, Application of Srivastava-Attiya Operator to the Generalization of Mocanu Functions, Int. J. Anal. Appl., 17 (4) (2019), 674-685.#### Abstract

In this paper we introduce certain subclasses of analytic functions by applying Srivastava-Attiya operator. Our main purpose is to derive inclusion results by using concept of conic domain and subordination techniques. We also deduce some new as well as well-known results from our investigations.

##### Full Text: PDF

#### References

- J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (Ser. 2). 17 (1915), 12-22.
- H.A. Al-Kharsani and A. Sofo, Subordination results on harmonic k-uniformly convex mappings and related classes, Comput. Math. Appl. 59 (2010), 3718-3726.
- S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Mat. Soc. 135 (1969), 429-446.
- J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl. 2013 (2013), Art. ID. 349.
- I.B. Jung, Y.C. Kim, and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
- S. Kanas, Subordinations for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin. 15 (2008), 589-598.
- S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003), 2389-2400.
- S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.
- S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Math. 105 (1999), 327-336.
- R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- S.S. Miller and P.T. Mocanu, Differential subordinations and applications, Marcel Dekker, Inc. New York-Basel. 2000.
- S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- P.T. Mocanu, Une propriete de convexite generlise dans la theorie de la representation conforme, Mathematica (Cluj). 11 (1969), 127-133.
- K.I. Noor, On generalization of uniformly convex and related functions, Comput. Math. Appl. 61 (2011), 117-125.
- K.I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl. 340 (2008), 1145-1152.
- K.I. Noor and S.N. Malik, On coefficient inequalities of functions associated by conic domains, Comput. Math. Appl. 62 (2011), 2209-2217.
- K.I. Noor and S.N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Modell. 55 (2012), 844-852.
- K.I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput. 196 (2008), 802-811.
- K.I. Noor and W. Ul-Haq, On some implication type results involving generalized bounded Mocanu variations, Comput. Math. Appl. 63 (2012), 1456-1461.
- D. R˘aducanu and H.M. Srivastava, A new class of analytic functions defined by means of convolution operator involving Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007), 933-943.
- A. Rasheed, S. Hussain, M.A. Zaighum and Z. Shareef, Analytic functions related with Mocanu class, Int. J. Anal. Appl. 16 (2018), 783-792.
- S. Sivasubramanian, M. Govindaraj and K. Piejko, On certain class of univalent functions with conic domains involving Sokol-Nunokawa class, U.P.B. Sci. Bull. Series A. 80 (2018), 123-134.
- J. Sokol and M. Nunokawa, On some class of convex functions, C. R. Math. Acad. Sci. Paris. 353 (2015), 427-431.
- H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms Spec. Funct. 18 (2007), 207–216.
- H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Dordrecht, Boston, London, Kluwer Academic Publishers, 2001.