Title: Some Fixed Point Theorems in Menger Probabilistic Partial Metric Spaces with Application to Volterra Type Integral Equation
Author(s): Amir ‎Ghanenia, Mahnaz khanehgir, Reza Allahyari, Mohammad ‎Mehrabinezhad
Pages: 771-792
Cite as:
Amir ‎Ghanenia, Mahnaz khanehgir, Reza Allahyari, Mohammad ‎Mehrabinezhad, Some Fixed Point Theorems in Menger Probabilistic Partial Metric Spaces with Application to Volterra Type Integral Equation, Int. J. Anal. Appl., 17 (5) (2019), 771-792.

Abstract


In this paper, we introduce the notion of Menger probabilistic partial metric space and prove some fixed point theorems in the framework of such spaces. Some examples and an application to Volterra type integral equation are given to support the obtained results. Finally, we apply successive approximations method to find a solution for a Volterra type integral equation with high accuracy.

Full Text: PDF

 

References


  1. T. Abdeljawada, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. (2011), 1–5. Google Scholar

  2. W. Abdul-Majid, Linear and Nonlinear Integral Equations: Methods and Applications, Springer, 2011. Google Scholar

  3. H. Aydi, E. Karapinar and S. Rezapour, A Generalized Meir-Keeler contraction on partial metric spaces, Abstr. Appl. Anal. 2012 (2012), Article ID 287127. Google Scholar

  4. N.A. Babacev, Nonlinear generalized contraction on Menger PM-spaces, Appl. Anal. Discrete Math. 6 (2012), 257–264. Google Scholar

  5. M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh, Partial metric spaces, Am. Math. Montly, 116 (2009), 708–718. Google Scholar

  6. S. Chauhan, S. Bhatnagar and S. Radenovic, Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces, Le Mathematiche, LXVIII (2013)-Fasc. I, 87–98. Google Scholar

  7. S. Chauhan, M. Imdad, C. Vetro and W. Sintunavarat, Hybrid coincidence and common fixed point theorems in Menger probabilistic metric spaces under a strict contractive condition with an application, Appl. Math. Comput. 239 (2014), 422–433. Google Scholar

  8. T. Dosenovic, D. Rakic, B. Caric and S. Radenovic, Multivalued generalizations of fixed point results in fuzzy metric spaces, Nonlinear Anal., Model. Control, 21(2) (2016), 211–222. Google Scholar

  9. P.N. Dutta, B.S. Choudhury and K.P. Das, Some fixed point results in Menger spaces using a control function, Surv. Math. Appl. 4 (2009), 41–52. Google Scholar

  10. D. Gopal, M. Abbas and C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput. 232 (2014), 955–967. Google Scholar

  11. L. Grammont, Nonlinear integral equations of the second kind: A new version of Nystr¨om method. Numer. Funct. Anal. Optim. 34(5) (2013), 496-515. Google Scholar

  12. O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, 2001. Google Scholar

  13. F. Hasanvand and M. Khanehgir, Some fixed point theorems in Menger P bM-spaces with an application, Fixed Point Theory Appl. 2015 (2015), 81. Google Scholar

  14. S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications. Ann. N.Y. Acad. Sci. 728 (1994), 183–197. Google Scholar

  15. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535–537. Google Scholar

  16. Z. Mustafa, J. Rezaei Roshan, V. Parvaneh and Z. Kadelburg, Some common fixed point results in orderd partial b-metric spaces, J. Inequal. Appl. 2013 (2013), 562. Google Scholar

  17. P. Patle, D. Patel, H, Aydi and S. Radenovi´c, On H+type multivalued contraction and its applications in symmetric and probabilistic spaces, Mathematics, 7 (2019), 144. Google Scholar

  18. M. Rabbani and R. Arab, Extension of some theorems to find solution of nonlinear integral equation and homotopy perturbation method to solve it, Math. Sci. 11(2) (2017), 87–94. Google Scholar

  19. S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 493298, 6 pages. Google Scholar

  20. B. Schweizer and S. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. Google Scholar

  21. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North-Holland, New York, 1983. Google Scholar

  22. S. Sedghi, N. Shobkolaei, T. Dosenovi´c and S. Radenovic, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca 68(2) (2018), 451–462. Google Scholar

  23. V.M. Sehgal and A.T. Bharucha-Reid, Fixed point of contraction mappings in PM-spaces, Math. Syst. Theory, 6 (1972), 97–102. Google Scholar

  24. Y. Shi, L. Ren and X. Wang, The extension of fixed point theorems for set valued mapping, J. Appl. Math. Comput. 13 (2003), 277–286. Google Scholar

  25. Stevens, Metrically generated PM-spaces, Fund. Math. (1968), 259–269. Google Scholar

  26. Y. Su and J. Zhang, Fixed point and best proximity point theorems for contractions in new class of probabilistic metric spaces, Fixed Point Theory Appl. 2014 (2014), 170. Google Scholar