Title: Computing Special Smarandache Curves According to Darboux Frame in Euclidean 4-Space
Author(s): M. Khalifa Saad, M. A. Abd-Rabo
Pages: 479-502
Cite as:
M. Khalifa Saad, M. A. Abd-Rabo, Computing Special Smarandache Curves According to Darboux Frame in Euclidean 4-Space, Int. J. Anal. Appl., 17 (4) (2019), 479-502.

Abstract


In this paper, we study some special Smarandache curves and their differential geometric properties according to Darboux frame in Euclidean 4-space E4. Also, we compute some of these curves which lie fully on a hypersurface in E4. Moreover, we defray some computational examples in support our main results.

Full Text: PDF

 

References


  1. C. Ashbacher, Smarandache geometries, Smarandache Notions J. 8(1-3) (1997), 212–215. Google Scholar

  2. M. Khalifa Saad, Spacelike and timelike admissible Smarandache curves in pseudo-Galilean space, J. Egypt. Math. Soc. 24 (2016), 416–423. Google Scholar

  3. M. Cetin, H. Kocayigit, On the quaternionic Smarandache curves in Euclidean 3- space, Int. J. Contemp. Math. Sci. 8(3) (2013), 139–150. Google Scholar

  4. M. Do Carmo, Differential Geometry of curves and surface, Englewood Cliffs, NJ, USA, Prentice Hall, 1976. Google Scholar

  5. H.S. Abdel-Aziz, M. Khalifa Saad, Smarandache curves of some special curves in the Galilean 3-space, Honam Math. J. 37(2) (2015), 253–264. Google Scholar

  6. H.S. Abdelaziz, M. Khalifa Saad, Computation of Smarandache curves according to Darboux frame in Minkowski 3-space, J. Egypt. Math. Soc. 25 (2017), 382–390. Google Scholar

  7. H.S. Abdelaziz, M. Khalifa Saad, Some geometric invariants of pseudo-spherical evolutes in the hyperbolic 3-space, Comput. Mater. Continua 57(3) (2018), 389–415. Google Scholar

  8. A.T. Ali, Special Smarandache curves in the Euclidean space, Int. J. Math. Comb. 2 (2010), 30–36. Google Scholar

  9. O. Bektas, S. Yuce, Smarandache curves according to Darboux frame in Euclidean space, Rom. J. Math. Comput. Sci. 3(1) (2013), 48–59. Google Scholar

  10. M. Cetin, Y. Tuncer, M. K. Karacan, Smarandache curves according to Bishop frame in Euclidean space, Gen. Math. Notes 20(2) (2014), 50–66. Google Scholar

  11. M. Turgut, S. Yilmaz, Smarandache curves in Minkowski space-time, Int. J. Math. Comb. 3 (2008), 51–55. Google Scholar

  12. K. Taskpru, M. Tosun, Smarandache curves according to Sabban frame on S 2 , Bol. Soc. Paran. Mat. 32(1) (2014), 51–59. Google Scholar

  13. O. Alessio, Differential geometry of intersection curves in R4 of three implicit surfaces, Comput. Aided Geom. Des. 26 (2009), 455–471. Google Scholar

  14. H.S. Abdel-Aziz, M. Khalifa Saad, A. A. Abdel-Salam, On Implicit Surfaces and Their Intersection Curve in Euclidean 4-Space, Houston J. Math. 40(2) (2014), 339–352. Google Scholar

  15. B. O’Neill, Elementary Differential Geometry, Burlington, MA, USA, Academic Press, 1966. Google Scholar

  16. M. Duldu, B. D¨uld¨ul, N. Kuruoˇglu and E. Ozdamar, Extension of the Darboux frame into Euclidean 4-space and its ¨ invariants, Turk. J. Math. 41 (2017), 1628–1639. Google Scholar