Title: Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
Author(s): Ghulam Farid, Vishnu Narayan Mishra, Sajid Mehmood
Pages: 892-903
Cite as:
Ghulam Farid, Vishnu Narayan Mishra, Sajid Mehmood, Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function, Int. J. Anal. Appl., 17 (5) (2019), 892-903.

Abstract


In this paper, we will prove the Hadamard and the Fejer-Hadamard type integral inequalities for convex and relative convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well known fractional integral operators.

Full Text: PDF

 

References


  1. G. Abbas, G. Farid, Some integral inequalities of the Hadamard and the Fejer Hadamard type via generalized fractional integral operator, J. Nonlinear Anal. Optim. 8 (2018), 12pp. Google Scholar

  2. M. Andric, G. Farid, J. Pecaric, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal. 21(5) (2018), 1377-1395. Google Scholar

  3. D. I. Duca, L. Lupa, Saddle points for vector valued functios: existance, necessary and sufficient theorems, J. Glob. Optim. 53 (2012), 431–440. Google Scholar

  4. G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for relative convex functions via fractional integrals, Nonlinear Anal. Forum 21(1) (2016), 77-86. Google Scholar

  5. G. Farid, Hadamard and Fejer-Hadamard inequalities for generalized fractional integrals involving special functions, Konuralp J. Math. 4(1) (2016), 108–113. Google Scholar

  6. I. Iscan, Hermite Hadamard Fejer type inequalities for convex functions via fractional integrals, Stud. Univ. Babes-Bolyai Math. 60(3) (2015), 355–366. Google Scholar

  7. M. A. Noor, Differential non-convex functions and general variational inequalities, Appl. Math. Comput. 199(2) (2008), 623–630. Google Scholar

  8. M. A. Noor, K. I. Noor, M. U. Awan, Generalized convexity and integral inequalities, Appl. Math. Inf. Sci. 9(1) (2015), 233-243. Google Scholar

  9. J. Pecaric, F. Proschan, Y. L. Tong, Convex funtions, partial orderings and statistical applications, Academic Press, New York, 1992. Google Scholar

  10. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15. Google Scholar

  11. G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl. 10 (2017), 4244-4253. Google Scholar

  12. T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl. 3(5) (2012), 1–13. Google Scholar

  13. A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007), 797-811. Google Scholar

  14. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag- Leffler function in the kernel, Appl. Math. Comput. 211(1) (2009), 198–210. Google Scholar