##### Title: Fixed Point Theorem of Ciric-Pata Type

##### Pages: 275-281

##### Cite as:

Ao-Lei Sima, Fei He, Ning Lu, Fixed Point Theorem of Ciric-Pata Type, Int. J. Anal. Appl., 17 (2) (2019), 275-281.#### Abstract

In this article, we proved a fixed point theorem of Ćirić-Pata type in metric space. This result extends several results in the existing literature. Moreover, an example is given in the support of our result. In particular, the main result provides a complete solution to an open problem raised by Kadelburg and Radenović (J. Egypt. Math. Soc. 24 (2016) 77-82).

##### Full Text: PDF

#### References

- V. Pata, A fixed point theorems in metric spaces, J. Fixed Point Theory Appl. 10 (2011), 299–305.
- M. A. Alghamdi, A. Petrusel and N. Shahzad, Correction: A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl. 2012 (2012), 122.
- S. Balasubramanian, A Pata-type fixed point theorem, Math. Sci. 8 (2014), 65–69.
- M. Eshaghi, S. Mohseni, M. R. Delavar, M. De La Sen, G. H. Kim and A. Arian, Pata contractions and coupled type fixed points, Fixed Point Theory Appl. 2014 (2014), 130.
- G. K. Jacob, M. S. Khan, C. Park and S. Jun, On generalized Pata type contractions, Mathmatics. 6 (2018), 25.
- Z. Kadelburg and S. Radenović, Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric spaces, International Journal of Analysis and Applications. 6 (2014), 113–122.
- Z. Kadelburg and S. Radenović, Fixed points theorems under Pata-type conditions in metric spaces, J. Egypt. Math. Soc. 24 (2016), 77–82.
- S. M. Kolagar, M. Ramezani and M. Eshaghi, Pata type fixed point theorems of multivalued operators in ordered metric spaces with applications to hyperbolic differential inclusions, Proc. Amer. Math. Soc. 6 (2016), 21–34.
- M. Paknazar, M. Eshaghi, Y. J. Cho and S. M. Vaezpour, A Pata-type fixed point theorem in modular spaces with application, Fixed Point Theory and Appl. 2013 (2013), 239.
- L. J. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.