Title: Some Properties of Generalized Strongly Harmonic Convex Functions
Author(s): Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar, Farhat Safdar
Pages: 427-436
Cite as:
Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar, Farhat Safdar, Some Properties of Generalized Strongly Harmonic Convex Functions, Int. J. Anal. Appl., 16 (3) (2018), 427-436.

Abstract


In this paper, we introduce a new class of harmonic convex functions with respect to an arbitrary trifunction F(·,·,·): K×K×[0,1]→R, which is called generalized strongly harmonic convex functions. We study some basic properties of strongly harmonic convex functions. We also discuss the sufficient conditions of optimality for unconstrained and inequality constrained programming under the generalized harmonic convexity. Several special cases are discussed as applications of our results. Ideas and techniques of this paper may motivate further research in different fields.

Full Text: PDF

 

References


  1. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2007), 1294-1308. Google Scholar

  2. M. S. Bazaraa, D. Hanif, C. M. Shetty, Nonlinear Programming Theory and Algorithms John Wiley and Sons, New York, 1993. Google Scholar

  3. C.R. Bector, C. Singh, B-vex functions, J. Optim. Theory Appl., 71 (1991), 439-453. Google Scholar

  4. M. T. Chao, J. B. Jian and D. Y. Liang, Sub-b-convex functions and sub-F-convex programming, Oper. Res. Trans., 16(2012), 1-8. Google Scholar

  5. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions. Hacet, J. Math. Stats., 43(6)(2014), 935-942. Google Scholar

  6. J. Liao and T. Du, On some characterizations of sub-b-s-convex functions, Filomat, 30(14)(2016), 3885-3895. Google Scholar

  7. C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, (2006). Google Scholar

  8. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 251(2004), 199-277. Google Scholar

  9. M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inf. Sci., 10(5)(2016), 1811-1814. Google Scholar

  10. M. A. Noor and K. I. Noor, Some implicit methods frsolving harmonic variational inequalites, Inter. J. Anal. Appl. 12(1)(2016), 10-14. Google Scholar

  11. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequ. Special Func.,7(3)(2016), 99-113. Google Scholar

  12. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions(survey), TWMS J. Pure Appl. Math. 7(1)(2016), 3-19. Google Scholar

  13. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic preinvex functions, Saussurea 6(1)(2016), 34-53. Google Scholar

  14. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities of Hermite-Hadamard type for harmonic (h,s)-convex functions, Int. J. Anal. Appl., 11(1)(2016), 61-69. Google Scholar

  15. M. A. Noor, K. I. Noor, S. Iftikhar and F. Safdar, Integral inequalities for relative harmonic (s,η)-convex functions, Appl. Math. Comput. Sci. 1(1)(2016), 27-34. Google Scholar

  16. M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu, Hermite-Hadamard inequalities for co-ordinated harmonic convex functions, U.P.B. Sci. Bull., Ser: A, 79(1)(2017), 25-34. Google Scholar

  17. M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex functions, Int. J. Anal. Appl. 15(2)(2017), 179-187. Google Scholar

  18. M. A. Noor, B. Bin-Mohsin, K. I. Noor and S. Iftikhar, Relative strongly harmonic convex functions and their characteri- zations, J. Nonlinear Sci. Appl. in press. Google Scholar

  19. J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Acdemic Press, New York, (1992). Google Scholar

  20. T.-Y. Zhang, Ai-P. Ji, F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions, Proc. Jangjeon. Math. Soc., 16(3)(2013), 399-407. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2021 IJAA, unless otherwise stated.