Lacunary I_2-Invariant Convergence and Some Properties

Main Article Content

Ugur Ulusu
Erdinc Dundar
Fatih Nuray

Abstract

In this paper, the concept of lacunary invariant uniform density of any subset $A$ of the set $\mathbb{N}\times\mathbb{N}$ is defined. Associate with this, the concept of lacunary $\mathcal{I}_2$-invariant convergence for double sequences is given. Also, we examine relationships between this new type convergence concept and the concepts of lacunary invariant convergence and $p$-strongly lacunary invariant convergence of double sequences. Finally, introducing lacunary $\mathcal{I}_2^*$-invariant convergence concept and lacunary $\mathcal{I}_2$-invariant Cauchy concepts, we give the relationships among these concepts and relationships with lacunary $\mathcal{I}_2$-invariant convergence concept.

Article Details

References

  1. P. Das, P. Kostyrko, W. Wilczy ´ nski and P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
  2. E. Dündar and B. Altay, I2-convergence and I2-Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343-353.
  3. E. Dündar, U. Ulusu and F. Nuray, On ideal invariant convergence of double sequences and some properties, Creat. Math. Inf., 27(2) (2018), (in press).
  4. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
  5. P. Kostyrko, T.ˇSalát and W. Wilczy ´ nski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
  6. V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
  7. S. A. Mohiuddine and E. Sava ¸s, Lacunary statistically convergent double sequences in probabilistic normed spaces, Ann Univ. Ferrara, 58 (2012), 331-339.
  8. M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505-509.
  9. M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10 (1979), 457-460.
  10. M. Mursaleen and O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
  11. A. Nabiev, S. Pehlivan and M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math., 11(2) (2007), 569-576.
  12. F. Nuray, H. Gök and U. Ulusu, Iσ-convergence, Math. Commun. 16 (2011) 531-538.
  13. N. Pancaroˇglu and F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl., 3(2) (2013), 71-78.
  14. A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289?21.
  15. R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1) (1963), 81-94.
  16. E. Sava ¸s, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1-8.
  17. E. Sava ¸s, Strongly σ-convergent sequences, Bull. Calcutta Math., 81 (1989), 295-300.
  18. E. Sava ¸s and R. Patterson, Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl., 11(4) (2009).
  19. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
  20. U. Ulusu and F. Nuray, Lacunary Iσ-convergence, (under review).