Title: On Λ-Type Duality of Frames in Banach Spaces
Author(s): Renu Chugh, Mukesh Singh, L. K. Vashisht
Pages: 148-158
Cite as:
Renu Chugh, Mukesh Singh, L. K. Vashisht, On Λ-Type Duality of Frames in Banach Spaces, Int. J. Anal. Appl., 4 (2) (2014), 148-158.


Frames are redundant system which are useful in the reconstruction of certain classes of spaces. The dual of a frame (Hilbert) always exists and can be obtained in a natural way. Due to the presence of three Banach spaces in the definition of retro Banach frames (or Banach frames) duality of frames in Banach spaces is not similar to frames for Hilbert spaces. In this paper we introduce the notion of Λ-type duality of retro Banach frames. This can be generalized to Banach frames in Banach spaces. Necessary and sufficient conditions for the existence of the dual of retro Banach frames are obtained. A special class of retro Banach frames which always admit a dual frame is discussed.

Full Text: PDF



  1. P.G.Casazza and G. Kutynoik, Finite Frames, Birkh¨auser, 2012. Google Scholar

  2. P.G. Casazza, The art of frame theory, Tawanese J. Math., 4(2) (2000), 129–201 Google Scholar

  3. P.G. Casazza, D. Han and D.R. Larson, Frames for Banach spaces, Contemp. Math., 247 (1999), 149–182. Google Scholar

  4. P.G.Casazza, G.Kutyniok and M.C.Lammers, Duality principles in frame thoery, J. Fourier Anal. Appl., 10 (2004), 383–408. Google Scholar

  5. O. Christensen, Frames and bases (An introductory course), Birkh¨auser, Boston (2008). Google Scholar

  6. I.Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283. Google Scholar

  7. R.J. Duffin and A.C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366. Google Scholar

  8. I.Daubechies, H. Landau and Z.Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl., 1(4) (1995), 437–478. Google Scholar

  9. H.G. Feichtinger and K. Gr¨ochenig, A unified approach to atomic decompositons via inegrable group representations, Lecture Notes in Mathematics, 1302 (Springer, Berlin, 1988), 52–73. Google Scholar

  10. K. Gr¨ochenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math., 112, (1991), 1–41. Google Scholar

  11. D. Han and D.R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc., 147 (697) (2000), 1–91. Google Scholar

  12. C.Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev., 31 (4) (1989), 628–666. Google Scholar

  13. C. Heil, A basis theory primer, Birkh¨auser (expanded edition)(1998). Google Scholar

  14. H.Heuser, Functional Analysis, John Wiley and Sons, New York (1982). Google Scholar

  15. P.K.Jain, S.K.Kaushik and L.K. Vashisht, Banach frames for conjugate Banach spaces, Z. Anal. Anwendungen, 23 (4) (2004), 713–720. Google Scholar

  16. J. Kovacˇcevi´c and A. Chebira, Life Beyond Bases: The advent of frames (Part I), IEEE Signal Processing Magazine, 86, July, 2007. Google Scholar

  17. J. Kovacˇcevi´c and A. Chebira, Life Beyond Bases: The advent of frames (Part II), IEEE Signal Processing Magazine, 115, September, 2007. Google Scholar

  18. L.K. Vashisht, On retro Banach frames of type P, Azerb. J. Math., 2 (1) (2012), 82–89. Google Scholar

  19. L.K. Vashisht, On Φ-Schauder frames, TWMS J. App. and Eng. Math.(JAEM), 2 (1) (2012), 116-120. Google Scholar

  20. R. Young, On complete biorthogonal systems, Proc. Amer. Math. Soc., 83 (3) (1981), 537- 540. Google Scholar

  21. R. Young, A introduction to non-harmonic Fourier series, Academic Press, New York (revised first edition 2001). Google Scholar


Copyright © 2020 IJAA, unless otherwise stated.