Robust Stability and Design of State Feedback Controller for Straightforward Active Queue Management

Main Article Content

Mehrdad Nozohour Yazdi, Ali Delavarkhalafi

Abstract

The straightforward active queue management ($AQM$), which is based on the prediction of arrival rate is investigated by means of state-space approach. We formulate the feedback control design problem for linearized system of additive increase multiplicative decrease ($AIMD$) dynamic models as state-space model. Then the Lyapunov-Krasovskii method is provided to achieve the robust stability and sufficient stabilization condition and afterwards the term of linear inequality matrix ($LMI$) is used to show the results. We present the simulation results and show the superiority of our proposed method to other control mechanisms.

Article Details

References

  1. A. E. Abharian, H. Khaloozadeh, and R. Amjadifard, Genetic-sigmoid random early detection covariance control as a jitter controller, IET Control Theory Appl. 6 (2012), 327 - 334,.
  2. S. Athuraliya, S., S. Low, V. Li, and Q. Yin, REM: active queue management, IEEE Network Magazine, 15 (2001), 48-53,.
  3. M. Azadegan, M. T. Beheshti, and B. Tavassoli, Using AQM for performance improvement of networked control systems, Int. J. Control Autom. Syst. 13 (2015), 764-772.
  4. T. Azuma, T. Fujita, and M. Fujita, Congestion Control for TCP/AQM Networks using State Predictive Control, Electr. Eng. Japan, 156 (2006), 41-47.
  5. H. W. Bode, Network analysis and feedback amplifier design, Van Nostrand, New York (1945).
  6. R. V. Churchill, Brown, J. V., and Verhy, R. F., Complex variable and applications, McGraw-Hill, New York, (1976).
  7. D. B. Dacic, and D. Nesic, Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design, Automatica, 43 (2007), 1145-1155.
  8. S. L. Dai, H. Lin, and S. S. Ge, Scheduling and control codesign for a collection of networked control systems with uncertain delays, IEEE Trans.Control Syst. Technol., 18 (2010), 66-78,.
  9. S. Floyd, and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Trans. Networking, 1 (1993), 397-413.
  10. Y. Ge, J. Wang, and C. Li, Robust stability conditions for DMC controller with uncertain time delay, Int. J. Control Autom. Syst., 12 (2) (2014), 241-250.
  11. R. A. Gupta, and M. Y. Chow, Networked control system: Overview and research trends, IEEE Trans.Ind. Electron., 57 (7) (2010), 2527-2535.
  12. C. V. Hollot, V. Misra, D. Towsley, and W. Gong On Designing Improved Controllers for AQM Routers Supporting TCP Flows, Proc. IEEE INFOCOM, 3 (2001), 1726-34.
  13. C. V. Hollot, V. Misra, D. Towsley, and W. Gong Analysis and Design of Controllers for AQM Routers Supporting TCP Flows, IEEE Trans. Autom. Control, 47 (6) (2002), 945-959.
  14. D. Huang, and S. K. Nguang, State feedback control of uncertain networked control systems with random time delays, IEEE Trans. Autom. Control, 53 (3) (2008), 829-834.
  15. W. S. Levine, The control handbook, CRC Press, IEEE Press, Boca Raton, New York , (1996).
  16. H. Li, and Y. Shi, Network-based predictive control for constrained nonlinear systems with two-channel packet dropouts, IEEE Trans. Ind. Electron., 61 (10) (2014), 1574-1582,.
  17. P. Liu, Robust exponential stability for uncertain time-varying delay systems with delay dependence, J. Franklin Inst. 346 (3) (2009), 958-968.
  18. X. Liu, and A. Goldsmith, Wireless network design for distributed control, 43rd IEEE Conf. on Decision and Control, pp. 2823-2829, (2004).
  19. S. H. Low, F. Paganini, and J. C. Doyle, Internet Congestion Control, 43rd IEEE Control Syst. pp. 28-43, (2002).
  20. V. Misra, W. Gong, and D. Towsley Fluid-based Analysis of Network of AQM Routers Supporting TCP Flows with an Application to RED, Proc. ACM/SIGCOMM, 30 (2000), 151-160.
  21. H. Naito, T. Azuma, A. Nishimura, and M.Fujita, Experimental Verification of Congestion Controllers for TCP/AQM Networks, IEEJ Trans. EIS, 124 (2004), 2093-2100.
  22. Shevitz, D. and B. Paden, Lyapunov Stability Theory of Nonsmooth Systems, IEEE Trans. Autom. Control, 39 (9) (1994), 1910-1914.
  23. H. Wang, C. Liao, and Z. Tian, Effective adaptive virtual queue: a stabilising active queue management algorithm for improving responsiveness and robustness, IET Commun. 5 (2011), 99-109.
  24. P. Wang, H. Chen, X. Yang, and Y. Ma, Design and analysis of a model predictive controller for active queue management, ISA Trans. 51 (2012), 120-131.
  25. J. Xiong, and J. Lam, Stabilization of networked control systems with a logic ZOH, IEEE Trans. Autom. Control, 54 (2009), 358-363.
  26. H. Xu, A. Sahoo, and S. Jagannathan, Stochastic adaptive event-triggered control and network scheduling protocol co-design for distributed networked systems, IET Contr. Theory Appl. 8 (18) (2014), 2253-2265.
  27. Q. Xu, and J. Sun, A simple active queue management based on the prediction of the packet arrival rate, J. Network Comput. Appl. 42 (2014), 12-20.
  28. W. Zhang, M. S. Branicky, and S. M. Phillips, Stability of networked control systems, IEEE Control Syst. Mag. 21 (1) (2001), 84-99.
  29. P. Zhang, C. Ye, X. Ma, Y. Chen, and X. Li, Using Lyapunov function to design optimal controller, J. Zhejiang Univ. Sci. A, 8 (2007), 113-118.
  30. L. Zhanga, and D. H. Varsakelis, Communication and control co-design for networked control systems, Automatica, 42 (2006), 953-958.