Title: Some Properties of Special Magnetic Curves
Author(s): H. S. Abdel-Aziz, M. Khalifa Saad, Haytham A. Ali
Pages: 193-208
Cite as:
H. S. Abdel-Aziz, M. Khalifa Saad, Haytham A. Ali, Some Properties of Special Magnetic Curves, Int. J. Anal. Appl., 16 (2) (2018), 193-208.


In the theory of curves, a magnetic field generates a magnetic flow whose trajectories are curves called magnetic curves. This paper aims at studying some properties for these curves which corresponding to the Killing magnetic fields in the 3-dimensional Euclidean space. We investigate the trajectories of the magnetic fields called $T$-magnetic and $e$-magnetic curves, also we give some characterizations of these curves. In addition, we determine all magnetic curves for new spherical images of a spherical curve and finally, we defray some examples to confirm our main results.

Full Text: PDF



  1. R. Talman, Geometric Mechanics, Toward a Unification of Classical Physics, second ed., Wiley-VCH, 2007. Google Scholar

  2. A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Physics 173 (1987), 185–209. Google Scholar

  3. T. Sunada, Magnetic flows on a Riemann surface, in: Proceedings of KAIST Mathematics Workshop, (1993), 93–108. Google Scholar

  4. T. Adachi, Kähler magnetic field on a complex projective space, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 12–13. Google Scholar

  5. T. Adachi, Kähler magnetic flow for a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (2) (1995), 473–483. Google Scholar

  6. J.L. Cabrerizo, M. Fernández, J.S. Gómez, The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A 42 (19) (2009), 1–10. Google Scholar

  7. J.L. Cabrerizo, M. Fernández, J.S. Gómez, On the existence of almost contact structure and the contact magnetic field, Acta Math. Hungar. 125 (1–2) 30 (2009), 191–199. Google Scholar

  8. S.L. Drut ¸˘ a-Romaniuc, M.I. Munteanu, Magnetic curves corresponding to Killing magnetic fields in E 3 , J. Math. Phys. 52 (11) (2011), 1–11. Google Scholar

  9. M.I. Munteanu, A.I. Nistor, The classification of Killing magnetic curves in S 2 ×R, J. Geom. Phys. 62 (2) (2012), 170–182. Google Scholar

  10. M. Barros, A. Romero, Magnetic vortices, Europhys. Lett. 77 (2007), 1–5. Google Scholar

  11. J. Koenderink, Solid shape, MIT Press, Cambridge, MA, (1990). Google Scholar

  12. L. Chen, Q. Han, D. Pei, W. Sun, The singularities of null surfaces in anti de Sitter 3-space, J. Math. Anal. Appl., 366 (2010), 256-265. Google Scholar

  13. B. O’Neil, Semi-Riemannian geometry, With applications to relativity, Academic Press, Inc., New York, (1983). Google Scholar

  14. M. Barros, J. L. Cabrerizo, M. Fernández and A. Romero, Magnetic vortex filament flows, J Math Phys 48 (2007), 1-27. Google Scholar

  15. ˙ I. Arslan and H.H. Hacısaliho˘ glu, On the spherical representatives of a curve, Int. J. Contemp. Math. Sciences, 4 (34) (2009), 1665-1670. Google Scholar

  16. S. Yılmaz, Bishop spherical images of a spacelike curve in Minkowski 3-space, Int. J. Phys. Scien., 5 (6), (2010), 898-905. Google Scholar

  17. S. Yılmaz, E. ¨ Ozyılmaz and M. Turgut, New spherical indicatrices and their characterizations, An. S ¸t. Univ. Ovidius Constanta, 18 (2) (2010), 337-354. Google Scholar


Copyright © 2020 IJAA, unless otherwise stated.