Periodic and Nonnegative Periodic Solutions of Nonlinear Neutral Dynamic Equations on a Time Scale

Main Article Content

Manel Gouasmia
Abdelouaheb Ardjouni
Ahcene Djoudi

Abstract

Let T be a periodic time scale. We use Krasnoselskii--Burton's fixed point theorem to show new results on the existence of periodic and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable delay of the form

$x^{\Delta }(t)=-a(t)h(x^{\sigma }(t))+Q(t,x(t-\tau (t)))^{\Delta}+G(t,x(t),x(t-\tau (t))),\text{ }t\in \mathbb{T}.$

We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a completely continuous map. The Caratheodory condition is used for the functions $Q$ and $G$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [16].

Article Details

References

  1. M. Adivar and Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Differential Equations, 2009, No. 1, 1-20.
  2. A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 3061-3069.
  3. A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Malaya J. Mat. 2(1) (2013) 60-67.
  4. A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52, 1 (2013) 5-19.
  5. A. Ardjouni and A. Djoudi, A. Existence, uniqueness and positivity of solutions for a neutral nonlinear periodic dynamic equation on a time scale, J. Nonlinear Anal. Optim. 6 (2) (2015), 19-29.
  6. M. Belaid, A. Ardjouni and A.Djoudi, Stability in totally nonlinear neutral dynamic equations on time scales, Int. J. Anal. Appl. 11 (2) (2016), 110-123.
  7. L. Bi, M. Bohner and M. Fan, Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal. 68 (2008), 1226-1245.
  8. M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.
  9. M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  10. T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
  11. S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg, 1988.
  12. E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006), no. 1, 315-325.
  13. E. R. Kaufmann and Y. N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale, Electron. J. Differential Equations, 2007 (2007), No. 27, 1-12.
  14. V. Lakshmikantham, S. Sivasundaram, B. Kaymarkcalan, Dynamic Systems on Measure Chains, Kluwer Academic Pub- lishers, Dordrecht, 1996.
  15. M. B. Mesmouli, A. Ardjouni, A. Djoudi, Existence and stability of periodic solutions for nonlinear neutral differential equations with variable delay using fixed point technique, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 54 (1) (2015), 95-108.
  16. M. B. Mesmouli, A. Ardjouni and A. Djoudi, Study of periodic and nonnegative periodic solutions of nonlinear neutral functional differential equations via fixed points, Acta Univ. Sapientiae, Mathematica, 8 (2) (2016), 255-270.
  17. D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974.