Title: New Subclass of Analytic Functions in Conical Domain Associated with Ruscheweyh q-Differential Operator
Author(s): Shahid Khan, Saqib Hussain, Muhammad Asad Zaighum, Muhammad Mumtaz Khan
Pages: 239-253
Cite as:
Shahid Khan, Saqib Hussain, Muhammad Asad Zaighum, Muhammad Mumtaz Khan, New Subclass of Analytic Functions in Conical Domain Associated with Ruscheweyh q-Differential Operator, Int. J. Anal. Appl., 16 (2) (2018), 239-253.

Abstract


In this paper, we consider a new class of analytic functions which is defined by means of a Ruscheweyh q-differential operator. We investigated some new results such as coefficients inequalities and other interesting properties of this class. Comparison of new results with those that were obtained in earlier investigation are given as Corollaries.

Full Text: PDF

 

References


  1. N. I. Ahiezer, Elements of theory of elliptic functions, Moscow, 1970. Google Scholar

  2. S. Hussain, S. Khan, M. A. Zaighum and M. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Math. 2(4)(2017), 622-634. Google Scholar

  3. S. Hussain, S. Khan, M. A. Zaighum, M. Darus and Z. Shareef, Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, J. Complex Anal. 2017 (2017), Article ID 2826514. Google Scholar

  4. W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973) 297-326. Google Scholar

  5. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math, 105 (1999), 327-336. Google Scholar

  6. S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657. Google Scholar

  7. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. slovaca, 64(5) (2014), 1183-1196. Google Scholar

  8. F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc, 20 (1969), 8-12. Google Scholar

  9. N. Khan, B. Khan, Q. Z. Ahmad and S. Ahmad, Some Convolution Properties of Multivalent Analytic Functions, AIMS Math. 2 (2) (2017), 260–268. Google Scholar

  10. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. In: Proc. of the Conference on Complex Analysis (Tianjin), 1992 (Z. Li, F. Y. Ren, L. Yang, S. Y. Zhang, eds.), Conf. Proc. Lecture Notes Anal., Vol. 1, Int. Press, Massachusetts, 1994, 157-169. Google Scholar

  11. K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl, 62(2011), 2209-2217. Google Scholar

  12. K. I. Noor, J. Sokol and Q. Z. Ahmad, Applications of conic type regions to subclasses of meromorphic univalent functions with respect to symmetric points, Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat. 111 (2017), 947C958. Google Scholar

  13. K. I. Noor, J. Sokól and Q. Z. Ahmad, Applications of the diffierential operator to a class of meromorphic univalent functions. J. Egyptian Math. Soc. 24 (2) (2016), 181-186. Google Scholar

  14. M. Nunokawa, S. Hussain, N. Khan and Q. Z. Ahmad, A subclass of analytic functions related with conic domain, J. Clas. Anal. 9 (2016), 137-149. Google Scholar

  15. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc, 48 (1943), 48-82. Google Scholar

  16. S. T. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc, 49 (1975), 109-115. Google Scholar

  17. H. Selverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc, 51 (1975), 109-116. Google Scholar

  18. S. Shams, S. R. Kulkarni, J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci, 55 (2004) 2959-2961. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.