Title: On Generalized Local Property of $|A;\delta|_{k}$-Summability of Factored Fourier Series
Author(s): B. B. Jena, Vandana --, S. K. Paikray, U. K. Misra
Pages: 209-221
Cite as:
B. B. Jena, Vandana --, S. K. Paikray, U. K. Misra, On Generalized Local Property of $|A;\delta|_{k}$-Summability of Factored Fourier Series, Int. J. Anal. Appl., 16 (2) (2018), 209-221.

Abstract


The convergence of Fourier series of a function at a point depends upon the behaviour of the function in the neighborhood of that point and it leads to the local property of Fourier series. In the proposed paper a new result on local property of $|\mathcal{A};\delta|_{k}$-summability of factored Fourier series has been established that generalizes a theorem of Sarig\"{o}l [13] (see [M. A. Sari\"{o}gol, On local property of $|\mathcal{A}|_{k}$-summability of factored Fourier series, \textit{J. Math. Anal. Appl.} 188 (1994), 118-127]) on local property of $|\mathcal{A}|_{k}$-summability of factored Fourier series.

Full Text: PDF

 

References


  1. S. N. Bhatt, An aspect of local property of |R,log,1| summability of the factored Fourier series, Proc. Natl. Inst. India 26 (1960), 69-73. Google Scholar

  2. H. Bor, A note on local property of factored Fourier series, J. Non. Anal. 64 (2006), 513-517. Google Scholar

  3. H. Bor, Local property of | ¯ N,p n | k -summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17 (1989), 165-170. Google Scholar

  4. H. Bor, On the local property of | ¯ N,p n | k -summability of factored Fourier series, J. Math. Anal. 163 (1992), 220-226. Google Scholar

  5. Deepmala, Piscoran Laurian-Ioan, Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series, J. Inequal. Appl. 2016 (2016), Art. ID 163. Google Scholar

  6. T. M. Fleet, On an extension of absolute summability and some theorems of Littlewood and paley, Proc. London Math. Soc. 37 (1957), 113-141. Google Scholar

  7. K. Matsumoto, Local property of the summability |R,p n ,1|, Tohoku Math. J 8 (1956), 114-124. Google Scholar

  8. K. N. Mishra, Multipliers for | ¯ N,p n |-summability of Fourier series, Bull.Inst. Math. Acad. Sinica 14 (1984), 431-438. Google Scholar

  9. V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India. Google Scholar

  10. V. N. Mishra, L. N. Mishra, Trigonometric Approximation of Signals (Functions) in L p (p ≥ 1)- norm, Int. J. Contem. Math. Sci. 7 (2012), 909-918. Google Scholar

  11. V. N. Mishra, S. K. Paikray, P. Palo, P. N. Samanta, M. Misra, U. K. Misra, On double absolute factorable matrix summability, Tbilisi Math. J. 10 (2017), 29-44. Google Scholar

  12. R. Mohanty, On the summability |R,logw,1| of Fourier series, J. London Math. soc. 25 (1950), 67-72. Google Scholar

  13. M. A. Sariögol, On local property of |A| k -summability of factored Fourier series, J. Math. Anal. Appl. 188 (1994), 118-127. Google Scholar

  14. W. T. Sulaiman, On local property of absolute weighted mean summability of Fourier series, Bull. Math. Anal. Appl. 4 (2011), 163-168. Google Scholar

  15. D. S Yu and P. Zhou, A new class of matrices and its applications to absolute summability factor theorems, Math. Comput. Model. 57 (2013), 401-412. Google Scholar

  16. E. C. Tichmarsh, The Theory of Functions, Oxford University Press, London, (1961). Google Scholar

  17. A. Zygmund, Trigonometric series, vol. I, Cambridge Univ. Press, Cambridge, (1959). Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.