Title: Complex Neutrosophic Subsemigroups and Ideals
Author(s): Muhammad Gulistan, Asghar Khan, Amir Abdullahc, Naveed Yaqoob
Pages: 97-116
Cite as:
Muhammad Gulistan, Asghar Khan, Amir Abdullahc, Naveed Yaqoob, Complex Neutrosophic Subsemigroups and Ideals, Int. J. Anal. Appl., 16 (1) (2018), 97-116.

Abstract


In this article we study the idea of complex neutrosophic subsemigroups. We define the Cartesian product of complex neutrosophic subsemigroups, give some examples and study some of its related results. We also define complex neutrosophic (left, right, interior) ideal in semigroup. Furthermore, we introduce the concept of characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets and study some results prove on its.

Full Text: PDF

 

References


  1. Zadeh, L. A. Fuzzy Sets. Inf. Control, 8 (1965), 338-353. Google Scholar

  2. Atanassov, K. T. Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87-96. Google Scholar

  3. Kuroki, N. Fuzzy Bi-ideals in Semigroups. Comment. Math. Univ. St. Pauli, 27 (1979), 17-21. Google Scholar

  4. Wang, H. et al. Single Valued Neutrosophic Sets. Proc of 10th Int Conf on Fuzzy Theory and Technology, Salt Lake City, Utah (2005). Google Scholar

  5. Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and logic, Rehoboth; American Research Press (1999). Google Scholar

  6. Buckley, J. J. Fuzzy Complex Numbers. Fuzzy Sets Syst. 33 (1989), 333-345. Google Scholar

  7. Nguyen, H. T. Kandel, A. and Kreinovich, V. Complex Fuzzy Sets. Towards New Foundations, IEEE. (2000), 7803-5877. Google Scholar

  8. Ramot, D. Milo, R. Friedman, M. Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10 (2002), 171-186. Google Scholar

  9. Sveinn, R. J. Haskoli Islands, Verkfraeoideild. Complex Fuzzy Sets. IEEE Trans. Fuzzy Syst. 10 (2002), 171 - 186. Google Scholar

  10. Zhang, G. Dillon, T. S. Cai, K. Y. Ma, J. and Lu, J. Operation Properties and δ-Equalities of Complex Fuzzy Sets. Int. J. Approx. Reason. 50 (2009), 1227-1249. Google Scholar

  11. Jun, Y. B. and Khan, A. Cubic Ideals in Semigroups. Honam Math. J. 35 (2013), 607-623. Google Scholar

  12. Abd Ulazeez, M. Alkouri, S. and Salleh, A. R. Complex Intuitionistic Fuzzy Sets. International Conference on Fundamental and Applied Sciences, AIP Conf. Proc. 1482 (2012), 464-470. Google Scholar

  13. Abd Ulazeez, M. Alkouri, S. and Salleh, A. R. Complex Atanassov’s Intuitionistic Fuzzy Relation. Hindawi Publishing Corporation Abstr. Appl. Anal. 2013 (2013), Article ID 287382, 18pages. Google Scholar

  14. Ali, M and Smarandache, F. Complex Neutrosophic Set. Neural. Comput. Applic. 28 (2017), 18171834. Google Scholar

  15. Cetkin, V. and Aygun, H. An Approach to Neutrosophic Subgroup and its Fundamental Properties. J. Intell. Fuzzy Syst. 29 (2015), 1941-1947. Google Scholar

  16. Iseki, K. A characterization of regular semigroups, Proc. Japan Acad. 32 (1965), 676-677. Google Scholar

  17. Turksen, I. B. Interval-Valued Fuzzy Sets Based on Normal Forms. Fuzzy Sets Syst. 20 (1986), 191-210. Google Scholar