##### Title: A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties

##### Pages: 83-96

##### Cite as:

J. Vanterler da C. Sousa, E. Capelas de Oliveira, A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties, Int. J. Anal. Appl., 16 (1) (2018), 83-96.#### Abstract

We introduce a truncated $M$-fractional derivative type for $\alpha$-differentiable functions that generalizes four other fractional derivatives types recently introduced by Khalil et al., Katugampola and Sousa et al., the so-called conformable fractional derivative, alternative fractional derivative, generalized alternative fractional derivative and $M$-fractional derivative, respectively. We denote this new differential operator by $_{i}\mathscr{D}_{M}^{\alpha,\beta }$, where the parameter $\alpha$, associated with the order of the derivative is such that $ 0 <\alpha<1 $, $\beta>0$ and $ M $ is the notation to designate that the function to be derived involves the truncated Mittag-Leffler function with one parameter.

The definition of this truncated $M$-fractional derivative type satisfies the properties of the integer-order calculus. We also present, the respective fractional integral from which emerges, as a natural consequence, the result, which can be interpreted as an inverse property. Finally, we obtain the analytical solution of the $M$-fractional heat equation and present a graphical analysis.

##### Full Text: PDF

#### References

- R. Herrmann, Fractional calculus: An Introduction for Physicists, World Scientific Publishing Company, Singapore, 2011.
- A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam, Vol. 207, 2006.
- I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, Vol. 198, 1999.
- E. Capelas de Oliveira, J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, (2014) (238459).
- U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arxiv.org/abs/1612.08596, (2016).
- R. Figueiredo Camargo, E. Capelas de Oliveira, Fractional Calculus (In Portuguese), Editora Livraria da F´ısica, S˜ ao Paulo, 2015.
- R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math, 264, (2014) 65–70.
- U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v2, (2014).
- J. Vanterler da C. Sousa, E. Capelas de Oliveira, M-fractional derivative with classical properties, Submitted, (2017).
- R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
- A. A. Kilbas, H. M.Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, Vol. 204, Elsevier, Amsterdam, 2006.
- M. Rafikov, J. M. Balthazar, Optimal pest control problem in population dynamics, Computational & Applied Mathematics 24 (1) (2005) 65–81.
- O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using d’Alembert approach, Progr. Fract. Differ. Appl. 2, (2016) 115–122.
- Y. Cenesiz, A. Kurt, The solutions of time and space conformable fractional heat equations with conformable fourier transform, Acta Univ. Sapientiae, Math. 7 (2) (2015) 130–140.