Title: A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties
Author(s): J. Vanterler da C. Sousa, E. Capelas de Oliveira
Pages: 83-96
Cite as:
J. Vanterler da C. Sousa, E. Capelas de Oliveira, A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties, Int. J. Anal. Appl., 16 (1) (2018), 83-96.


We introduce a truncated $M$-fractional derivative type for $\alpha$-differentiable functions that generalizes four other fractional derivatives types recently introduced by Khalil et al., Katugampola and Sousa et al., the so-called conformable fractional derivative, alternative fractional derivative, generalized alternative fractional derivative and $M$-fractional derivative, respectively. We denote this new differential operator by $_{i}\mathscr{D}_{M}^{\alpha,\beta }$, where the parameter $\alpha$, associated with the order of the derivative is such that $ 0 <\alpha<1 $, $\beta>0$ and $ M $ is the notation to designate that the function to be derived involves the truncated Mittag-Leffler function with one parameter.

The definition of this truncated $M$-fractional derivative type satisfies the properties of the integer-order calculus. We also present, the respective fractional integral from which emerges, as a natural consequence, the result, which can be interpreted as an inverse property. Finally, we obtain the analytical solution of the $M$-fractional heat equation and present a graphical analysis.

Full Text: PDF



  1. R. Herrmann, Fractional calculus: An Introduction for Physicists, World Scientific Publishing Company, Singapore, 2011. Google Scholar

  2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam, Vol. 207, 2006. Google Scholar

  3. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, Vol. 198, 1999. Google Scholar

  4. E. Capelas de Oliveira, J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, (2014) (238459). Google Scholar

  5. U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arxiv.org/abs/1612.08596, (2016). Google Scholar

  6. R. Figueiredo Camargo, E. Capelas de Oliveira, Fractional Calculus (In Portuguese), Editora Livraria da F´ısica, S˜ ao Paulo, 2015. Google Scholar

  7. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math, 264, (2014) 65–70. Google Scholar

  8. U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v2, (2014). Google Scholar

  9. J. Vanterler da C. Sousa, E. Capelas de Oliveira, M-fractional derivative with classical properties, Submitted, (2017). Google Scholar

  10. R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014. Google Scholar

  11. A. A. Kilbas, H. M.Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, Vol. 204, Elsevier, Amsterdam, 2006. Google Scholar

  12. M. Rafikov, J. M. Balthazar, Optimal pest control problem in population dynamics, Computational & Applied Mathematics 24 (1) (2005) 65–81. Google Scholar

  13. O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using d’Alembert approach, Progr. Fract. Differ. Appl. 2, (2016) 115–122. Google Scholar

  14. Y. Cenesiz, A. Kurt, The solutions of time and space conformable fractional heat equations with conformable fourier transform, Acta Univ. Sapientiae, Math. 7 (2) (2015) 130–140. Google Scholar


Copyright © 2021 IJAA, unless otherwise stated.