Title: Some Results on Controlled K−Frames in Hilbert Spaces
Author(s): M. Nouri, A. Rahimi, SH. Najafzadeh
Pages: 62-74
Cite as:
M. Nouri, A. Rahimi, SH. Najafzadeh, Some Results on Controlled K−Frames in Hilbert Spaces, Int. J. Anal. Appl., 16 (1) (2018), 62-74.


Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Also K-frames have been introduced to study atomic systems with respect to bounded linear operator. In this paper, the notion of controlled K-frames will be studied and it will be shown that controlled K-frames are equivalent to K-frames under some mild conditions. Finally, the stability of controlled K-Bessel sequences under perturbation will be discussed with some examples.

Full Text: PDF



  1. P. Balazs, J. P. Antoine, A. Grybos, Wighted and Controlled Frames, Int. J. Wavelets Multiresolut. Inf. Process. 8(1) (2010) 109-132. Google Scholar

  2. I. Bogdanova, P. Vandergheynst, J .P . Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. (19) (2005) 223-252. Google Scholar

  3. H. Bolcskei, F. Hlawatsch , H. G. Feichtinger,Frame theoretic analysis of over- sampled filter banks, IEEE Trans. Signal Process. 46 (1998) 3256-3268. Google Scholar

  4. P. Casazza, O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997) 543-557. Google Scholar

  5. P. G. Casazza, G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contemp. Math., vol.345. American Mathematical Society, Providence,(2004) 87-113. Google Scholar

  6. P.G. Casazza, G. Li .S. Kutyniok, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal.25 (2008) 114-132. Google Scholar

  7. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston 2003. Google Scholar

  8. N. E. Duday Ward, J. R. Partington, A construction of rational wavelets and frames in Hardy-Sobolev space with appli- cations to system modelling. SIAM.J.Control Optim.36 (1998) 654-679. Google Scholar

  9. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc.72 (1952) 341-366. Google Scholar

  10. I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27(1986) 1271-1283. Google Scholar

  11. Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9(1) (2003) 77-96. Google Scholar

  12. Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3(3) (2005) 347-359. Google Scholar

  13. P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J.s. (ed.) signals processing for multimedia, PP. 35-54.IOS press, Amsterdam (1999). Google Scholar

  14. D. Hua and Y. Huang, Controlled K-g-frames in Hilbert spaces, Results. Math. (2016) DOI 10.1007/s00025-016-0613-0. Google Scholar

  15. A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topol. 18(3) (2012), 256-265. Google Scholar

  16. K. Musazadeh and H. Khandani, Some results on controlled frames in Hilbert spaces, Acta Math. Sci. 36B(3) (2016), 655-665. Google Scholar

  17. A. Rahimi, A. Fereydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces , An. tiin. Univ. Ovidius Constana, 2(12) (2013), 223-236. Google Scholar

  18. M. Rashidi-Kouchi and A. Rahimi, On controlled frames in Hilbert C ∗ -modules, Int. J. Wavelets Multiresolut. Inf. Process. 15(4) (2017), Art. ID 1750038. Google Scholar

  19. T. Strohmer, R. Jr. Heath, Grass manian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257- 275. Google Scholar

  20. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. 322 (2006) 437-452. Google Scholar

  21. X. Xiao, Y. Zhu, L. Gˇ avruta, Some Properties of K-Frames in Hilbert Spaces , Results. Math. 63 (2013), 1243-1255. Google Scholar