Title: Inequalities of Fejer Type Related to Generalized Convex Functions
Author(s): S. Mohammadi Aslani, M. Rostamian Delavar, S. M. Vaezpour
Pages: 38-49
Cite as:
S. Mohammadi Aslani, M. Rostamian Delavar, S. M. Vaezpour, Inequalities of Fejer Type Related to Generalized Convex Functions, Int. J. Anal. Appl., 16 (1) (2018), 38-49.

Abstract


This paper deals with some Fejer type inequalities related to (η1, η2)-convex functions. In fact the difference between the right and middle part of Fejer inequality is estimated without using Hölder’s inequality when the absolute value of the derivative of considered function is (η1, η2)-convex. Furthermore we give two estimation results when the derivative of considered function is bounded and satisfies a Lipschitz condition.

Full Text: PDF

 

References


  1. A. Ben-Israel and B. Mond, What is invexity?, J. Aust. Math. Soc., Ser. B. 28 (1986) 1–9. Google Scholar

  2. S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998) 91–95. Google Scholar

  3. M. Eshaghi Gordji, S. S. Dragomir and M. Rostamian Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl., 6(2) (2016) 26–32. Google Scholar

  4. M. Eshaghi Gordji, M. Rostamian Delavar and M. De La Sen, On ϕ-convex functions, J. Math. Inequal., 10(1) (2016) 173–183. Google Scholar

  5. L. Fejer, Uber die fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss. 24 (1906) 369–390. Google Scholar

  6. M.A. Hanson and B. Mond, Convex transformable programming problems and invexity, J. Inf. Optim. Sci., 8 (1987) 201–207. Google Scholar

  7. W. Jeyakumar, Strong and weak invexity in mathematical programming, Eur. J. Oper. Res., 55 (1985) 109–125. Google Scholar

  8. M. Latif and S. S. Dragomir, New Inequalities of Hermite-Hadamard and Fej´ er Type Preinvexity, J. Comput. Anal. Appl., 19(1) (2015), 725–739. Google Scholar

  9. A. W. Robert and D. E. Varbeg, Convex functions, Academic Press, (1973). Google Scholar

  10. M. Rostamian Delavar and S.S. Dragomir, On η-convexity, Math. Inequal. Appl., 20 (2017) 203–216. Google Scholar

  11. M. Rostamian Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, (2016) 5:1661. Google Scholar

  12. M. Z. Sarikaya, On new Hermite Hadamard Fej´ er type integral inequalities, Stud. Univ. Babes-Bolyai Math. 57(3) (2012) 377–386. Google Scholar