Title: Type-2 Fuzzy G-Tolerance Relation and Its Properties
Author(s): Mausumi Sen, Dhiman Dutta, Ashok Deshpande
Pages: 172-178
Cite as:
Mausumi Sen, Dhiman Dutta, Ashok Deshpande, Type-2 Fuzzy G-Tolerance Relation and Its Properties, Int. J. Anal. Appl., 15 (2) (2017), 172-178.

Abstract


In this short communication we generalize the definition of type-2 fuzzy tolerance relation and consequently the type-2 fuzzy G-tolerance relation in type-2 fuzzy sets. The type-2 fuzzy G-tolerance relation helps in finding the type-2 fuzzy G-equivalence relation. Moreover, we have studied the notion of type-2 fuzzy tolerance relation in abstract algebra.

Full Text: PDF

 

References


  1. R. Aliev, W. Pedrycz, B. Guirimov, et al., Type-2 fuzzy nueral networks with fuzzy clustering and differential evolution optimization, Inf. Sci. 181 (2011), 1591-1608. Google Scholar

  2. S. Chakravarty and P.K. Dash, A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices, Appl. Soft Comput. 12 (2012), 931-941. Google Scholar

  3. B. Choi and F. Rhee, Interval type-2 fuzzy membership function generation methods for pattern recognition, Inf. Sci. 179 (2009), 2102-2122. Google Scholar

  4. T. Dereli, A. Baykasoglu, K. Altun, et al., Industrial applications of type-2 fuzzy sets and systems: a concise review, Comput. Indust. 62 (2011), 125-137. Google Scholar

  5. Dhiman Dutta and Mausumi Sen, Type-2 fuzzy equivalence relation on a groupoid under balanced and semibalanced maps, J. Inf. Math. Sci. (2017), in press . Google Scholar

  6. D. Dubois and H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci. 9 (6) (1978), 613-626. Google Scholar

  7. D. Dubois and H. Prade, Operations in a fuzzy-valued Logic, Inf. Control 43 (1979), 224-240. Google Scholar

  8. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, first ed., Acdemic Press Inc., New York, 1980. Google Scholar

  9. S.S. Gilan, M.H. Sebt and V. Shahhosseini, Computing with words for hierarchical competency based selection of personal in construction companies, Appl. Soft Comput. 12 (2012), 860-871. Google Scholar

  10. B. Q. Hu and C. Y. Wang, On type-2 fuzzy relations and interval-valued type-2 fuzzy sets, Fuzzy Sets Syst. 236 (2014), 1-32. Google Scholar

  11. N.N. Karnik and J.M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of time-series, Inf. Sci. 120 (1999), 89-111. Google Scholar

  12. N. N. Karnik and J. M. Mendel, Operations on type-2 fuzzy sets, Fuzzy Sets Syste. 79 (2001), 327-348. Google Scholar

  13. P. Kundu, S. Kar and M. Maiti, Multi-item solid transportation problem with type-2 fuzzy parameters, Appl. Soft Comput. 31 (2015), 61-80. Google Scholar

  14. J.M. Mendel, Computing with words and its relationship with fuzzistics, Inf. Sci. 177 (2007), 988-1006. Google Scholar

  15. M.Mizumoto and K.Tanaka, Some Properties of fuzzy sets of type-2, Inf. Control 31 (1976), 312-340. Google Scholar

  16. M.Mizumoto and K.Tanaka, Fuzzy sets of type-2 under algebraic product and algebraic sum, Fuzzy Sets Syst. 31 (1981), 277-290. Google Scholar

  17. I. Ozkan and I.B. Turksen, MiniMax e-star cluster validity index for type-2 fuzziness, Inform. Sci. 184 (2012), 64-74. Google Scholar

  18. C. Leal-Ramirez, O. Castillo, P. Melin, et al. , Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure, Inf. Sci. 181 (2011), 519-535. Google Scholar

  19. S.W. Tung, C. Quek, C. Guan, eT2FIS: an evolving type-2 neural fuzzy inference system, Inf. Sci. 220 (2013), 124-148. Google Scholar

  20. D. Wu, W. Tan, A simplified type-2 fuzzy logic controller for real-time control, ISA Trans. 45 (4) (2006), 503-516. Google Scholar

  21. L.A. Zadeh, The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I, Inf. Sci. 8 (1975), 199-249. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2021 IJAA, unless otherwise stated.