Title: Existence of Solutions and Ulam Stability for Caputo Type Sequential Fractional Differential Equations of Order α ∈ (2,3)
Author(s): Bashir Ahmad, Mohammed M. Matar, Ola M. El-Salmy
Pages: 86-101
Cite as:
Bashir Ahmad, Mohammed M. Matar, Ola M. El-Salmy, Existence of Solutions and Ulam Stability for Caputo Type Sequential Fractional Differential Equations of Order α ∈ (2,3), Int. J. Anal. Appl., 15 (1) (2017), 86-101.


We study initial value problems of sequential fractional differential equations and inclusions involving a Caputo type differential operator of the form: $\left(^{C}D_{a+}^{\alpha }+\lambda _{1}~^{C}D_{a+}^{\alpha -1}+\lambda _{2}~^{C}D_{a+}^{\alpha -2}\right),$ where $\alpha \in (2,3)$ and $\lambda _{i} (i=1, 2) $ are nonzero constants. Several existence and uniqueness results are accomplished by means of fixed point theorems. Sufficient conditions for Ulam stability of the given problem are also presented. Examples are constructed for the illustration of obtained results. Then we investigate the inclusions case of the problem at hand. An initial value problem for coupled sequential fractional differential equations is also discussed.

Full Text: PDF



  1. F. Meral, T. Royston and R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 939-945. Google Scholar

  2. K. Oldham, Ractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010), 9-12. Google Scholar

  3. C. Lee and F. Chang, Fractional-order PID controller optimization via improved electromagnetism-like algorithm, Expert Syst. Appl. 37 (2010), 8871-8878. Google Scholar

  4. E. Ahmed, A. El-Sayed and H. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl. 325 (2007), 542-553. Google Scholar

  5. F. Liu and K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl. 62 (2011), 822-833. Google Scholar

  6. G. Mophou, Optimal control of fractional diffusion equation, Comput. Math. Appl. 61 (2011), 68-78. Google Scholar

  7. J. Wang, Y. Zhou and W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Control Lett. 61 (2012), 472-476. Google Scholar

  8. R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math. 229 (2009), 400-415. Google Scholar

  9. X. Jiang, M. Xu and H. Qi, The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes, Nonlinear Anal. Real World Appl. 11 (2010), 262-269. Google Scholar

  10. I. Sokolov, A. Chechkin and J. Klafter, Fractional diffusion equation for a power-law truncated Levy process, Physica A. 336 (2004), 245-251. Google Scholar

  11. R. Nigmatullin, T. Omay and D. Baleanu, On fractional filtering versus conventional filtering in economics, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 979-986. Google Scholar

  12. M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dynam. 72 (2013), 301-309. Google Scholar

  13. F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A 371 (2013), 20120155. Google Scholar

  14. K. Balachandran, M. Matar, J. J. Trujillo, Note on controllability of linear fractional dynamical systems, J. Control Decis. 3 (2016), 267-279. Google Scholar

  15. O.P. Agrawal, Generalized Variational Problems and Euler-Lagrange equations, Comput. Math. Appl. 59 (2010), 1852-1864. Google Scholar

  16. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. Google Scholar

  17. Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. Google Scholar

  18. B. Ahmad, M. M Matar, R. P. Agarwal, Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions, Bound. Value Probl. 2015:220 (2015), 13 pp. Google Scholar

  19. B. Ahmad, M. M. Matar, S. K. Ntouyas, On general fractional differential inclusions with nonlocal integral boundary conditions, Differ. Equ. Dyn. Syst. (2016), DOI:10.1007/s12591-016-0319-5. Google Scholar

  20. M. Matar, On Existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1 < α ≤ 2, Acta Math. Univ. Comenianae, 84 (1) (2015), 51-57. Google Scholar

  21. L. Zhang, B. Ahmad, G. Wang, Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions, Appl. Math. Comput. 268 (2015), 388-392. Google Scholar

  22. D. Qarout, B. Ahmad, A. Alsaedi, Existence theorems for semilinear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions, Fract. Calc. Appl. Anal. 19 (2016), 463-479. Google Scholar

  23. B. Ahmad, Sharp estimates for the unique solution of two-point fractional-order boundary value problems, Appl. Math. Lett. 65 (2017), 77-82. Google Scholar

  24. S. Aljoudi, B. Ahmad, J.J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals 91 (2016), 39-46. Google Scholar

  25. B. Ahmad, S.K. Ntouyas, A. Alsaedi, Fractional differential equations and inclusions with nonlocal generalized Riemann-Liouville integral boundary conditions, Int. J. Anal. Appl. 13 (2017), 231-247. Google Scholar

  26. H.M. Srivastava, Remarks on some families of fractional-order differential equations, Integral Transforms Spec. Funct. 28 (2017), 560-564. Google Scholar

  27. W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal. 72 (2010), 1768-1777. Google Scholar

  28. R. W. Ibrahim, Stability of a fractional differential equation, Miskolc Math. Notes 13 (2012), 39-52. Google Scholar

  29. R. Agarwal, S. Hristova and D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal. 19 (2016), 290-318. Google Scholar

  30. N. Brillou¨ et-Belluot, J. Brzd¸ ek, and K. Ciepli´ nski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. (2012), Art. ID 716936, 41 pp. Google Scholar

  31. J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Art. ID 63. Google Scholar

  32. S. Abbas, M. Benchohra and A. Petrusel, Ulam stability for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theory Differ. Equ. 2014 (2014), Art. ID 51. Google Scholar

  33. R.W. Ibrahim and H.A. Jalab, Existence of Ulam stability for iterative fractional differential equations based on fractional entropy, Entropy 17 (2015), 3172-3181. Google Scholar

  34. D.R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London- New York, 1974. Google Scholar

  35. K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992. Google Scholar

  36. S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory. Mathematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997. Google Scholar

  37. H. F. Bohnenblust and S. Karlin, On a theorem of Ville, In Contributions to the Theory of Games. Vol. I, pp. 155-160, Princeton Univ. Press, 1950. Google Scholar

  38. A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser.Sci. Math. Astronom. Phys. 13 (1965), 781-786. Google Scholar

  39. A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. Google Scholar


Copyright © 2020 IJAA, unless otherwise stated.