##### Title: Some Characterizations of General Preinvex Functions

##### Pages: 46-56

##### Cite as:

Muhammad Uzair Awan, Muhammad Aslam Noor, Vishnu Narayan Mishra, Khalida Inayat Noor, Some Characterizations of General Preinvex Functions, Int. J. Anal. Appl., 15 (1) (2017), 46-56.#### Abstract

In this paper, we consider a new class of general preinvex functions involving an arbitrary function. We show that the optimality condition for general preinvex functions on general invex set can be characterized by a class of variational-like inequality. We also derive some integral inequalities of Hermite-Hadamard type via general preinvex functions. Some special cases are also discussed. Our results represent a significant refinement of the previously known results. These results may stimulate further research in this area.

##### Full Text: PDF

#### References

- G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, (2002).
- G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpathian J. Math. 31(2) (2015), 173-180.
- Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India (2014).
- S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, 2000.
- D. I. Duca and L. Lupsa, Saddle points for vector valued functions: existence, necessary and sufficient theorems, J. Glob. Optim., 53 (2012), 431–440.
- C. Fulga and V. Preda, Nonlinear programming with ϕ-preinvex and local ϕ-preinvex functions, Eur. J. Oper. Res. 192 (2009), 737–743.
- M. A. Hanson, On sufficiency of the Kuhn–Tucker conditions, J. Math. Anal. Appl., 80 (1981) 545–550.
- A. Ben-Israel and B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B 28 (1986), 1–9.
- S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908.
- L. N. Mishra, H. M. Srivastava, M. Sen, On existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., 11 (1) (2016), 1–10.
- L. N. Mishra, R. P. Agarwal, On existence theorems for some nonlinear functional-integral equations, Dynamic Systems and Appl., 25 (2016), 303–320.
- L. N. Mishra, On existence and behavior of solutions to some nonlinear integral equations with Applications, Ph.D. Thesis, National Institute of Technology, Silchar 788 010, Assam, India (2017).
- M. A. Noor, Differentiable nonconvex functions and general variational inequalities, Appl. Math. Comput., 199 (2008), 623–630.
- M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets Syst. 64 (1994), 95–104.
- M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007), 126–131.
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229.
- M. A. Noor, On Hermite-Hadamard integral inequalities for involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 3 (2007), 75–81.
- M. A. Noor, Variational like inequalities, Optimization 30 (1994), 323–330.
- M. A. Noor, M.U. Awan, K. I. Noor: On some inequalities for relative semi-convex functions. J. Inequal. Appl. 2013 (2013), Art. ID 332.
- M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Mathe. Infor. Sci., 8(2) (2014), 607-616.
- M. A. Noor, K. I. Noor, M. U. Awan, Hermite-Hadamard inequalities for relative semi-convex functions and applications, Filomat. 28 (2) (2014), 221-230.
- M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard type inequalities for h-preinvex functions. Filomat. 28 (7) (2014), 1463-1474.
- M. A. Noor, K. I. Noor, Integral inequalities for differentiable relative preinvex functions(survey), TWMS J. Pure Appl. Math. 7(1)(2016), 3-19
- T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38.
- E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439–450.