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Abstract. When A ∈ B(H) and B ∈ B(K) are given, we denote by MC the operator on the Hilbert

space H ⊕ K of the form MC =

 A C

0 B

 . In this paper we investigate the quasi-nilpotent part and

the analytical core for the upper triangular operator matrix MC in terms of those of A and B. We give

some necessary and sufficient conditions for MC to be left or right generalized Drazin invertible operator for

some C ∈ B(K,H). As an application, we study the existence and uniqueness of the solution for abstract

boundary value problems described by upper triangular operator matrices with right generalized Drazin

invertible component.
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1. Introduction and preliminaries

Let B(H) be the Banach algebra of all bounded linear operators acting on an infinite-dimensional complex

Hilbert space H. Associated with an operator T there are two (not necessarily closed) linear subspaces of H

invariant by T , played an important role in the development of the generalized Drazin inverse for T ∈ B(H),

the quasi-nilpotent part H0(T ) of T :

H0(T ) =
{
x ∈ H : lim

n→∞
‖Tnx‖

1
n = 0

}
and the analytical core K(T ) of T :

K(T ) = {x ∈ H : there exist a sequence (xn) in H and a constant δ > 0

such that Tx1 = x, Txn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n ∈ N}.

See also [1]. It is well-known that if K(T ) and H0(T ) are both closed, H = H0(T ) ⊕K(T ), the restriction

of T to H0(T ) is a quasi-nilpotent operator, and the restriction of T to K(T ) is invertible, provided that T

is generalized Drazin invertible, (c.f. [18]). Recently, by the use of this two subspaces, in [24], the authors

defined and studied a new class of operators called left and right generalized Drazin invertible operators as

a generalization of left and right Drazin invertible operators.

Definition 1.1. An operator T ∈ B(H) is said to be right generalized Drazin invertible if K(T ) is closed

and complemented with a subspace N in H such that T (N) ⊂ N ⊆ H0(T ).

Definition 1.2. An operator T ∈ B(H) is said to be left generalized Drazin invertible if H0(T ) is closed and

complemented with a subspace M in H such that T (M) ⊂M and T (M) is closed.

We also proved that T ∈ B(H) is a right generalized Drazin invertible if and only if 0 is an isolated point

on the surjective spectrum σsu(T ) of T and by duality T ∈ B(H) is a left generalized Drazin invertible if

and only if 0 is an isolated point on the approximate spectrum σap(T ). So we are mainly interested in the

case where the point 0 belongs to the spectrum σ(T ) of T or in its various distinguished parts. Here, we are

interested in the analogous question for an upper triangular operator of the form

MC =

 A C

0 B

 . (1.1)

defined on the separable Hilbert space H ⊕ K. Recall that the problem of the relationship between the

spectrum, various distinguished parts of the spectrum of an upper triangular and Drazin invertibility and its

diagonal has been considered by a number of authors in the recent past, we can see [4,5,13,21,22,28–30] and

the references therein for recent reviews on this topic. A related, and seemingly more demanding, problem
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is the following. Let H be a Hilbert space, T is a bounded linear operator on H, and M is a T -invariant

closed subspace of H, then T takes the form

T =

 ∗ ∗
0 ∗

 : M ⊕M⊥ →M ⊕M⊥

which motivated the interest in 2× 2 upper-triangular operator matrices.

In this paper we use the results of [24] to give a necessary and sufficient conditions for MC to be left (resp.

right) generalized Drazin invertible which generalizes the notion of generalized Drazin invertible operators

to the matrix case. We characterize the quasi-nilpotent part and the analytical core of the operator MC in

term of the pair (A,B) of bounded operators. We apply our results to study the existence and uniqueness

of solutions of boundary value problems described by an upper triangular operator matrices (2 × 2) acting

in Hilbert spaces with a complex spectral parameter λ :

(P)


(UL − λMC)w = F

Γw = Φ

,

where UL is right generalized Drazin invertible, Γ is a boundary operator, F and Φ are given.

For T ∈ B(H) write N(T ), R(T ), σ(T ) and ρ(T ) respectively, the null space, the range, the spectrum and

the resolvent set of T . The nullity and the deficiency of T are defined respectively by α(T ) = dimN(T ) and

β(T ) = dimH/R(T ). Here I denotes the identity operator in H. By isoσ(T ) and accσ(T ) we define the set

of all isolated and accumulation spectral points of T .

If M is a subspace of H then TM denote the restriction of T in M . Assume that M and N are two

subspaces of H such that H = M ⊕N (that is H = M +N and M ∩N = 0). We say that T is completely

reduced by the pair (M,N), denoted as (M,N) ∈ Red(T ), if T (M) ⊂M , T (N) ⊂ N and T = TM ⊕ TN . In

such case we have N(T ) = N(TM )⊕N(TN ), R(T ) = R(TM )⊕R(TN ) and Tn = TnM ⊕ TnN for all n ∈ N. An

operator is said to be bounded below if it is injective with closed range.

Recall that (see, e.g. [14]) the ascent a(T ) of an operator T ∈ B(H) is defined as the smallest nonnegative

integer p such that N(T p) = N(T p+1). If no such an integer exists, we set a(T ) = ∞. Analogously, the

smallest nonnegative integer q such that R(T q) = R(T q+1) is called the descent of T and denoted by d(T ).

We set d(T ) = ∞ if for each q, R(T q+1) is a proper subspace of R(T q). It is well known that if the

ascent and the descent of an operator are finite, then they are equal. Furthermore, if a(T ) = p < ∞ then

H0(T ) = N(T p) and if d(T ) = q <∞ then K(T ) = R(T q).

An operator T ∈ B(H) is said to be Drazin invertible, if there exists an operator S ∈ B(H) such that

ST = TS STS = S and TST = T + U where U is a nilpotent operator. (1.2)
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The concept of Drazin invertible operators has been generalized by Koliha ( [18]) by replacing the nilpotent

operator U in (1.2) by a quasi-nilpotent operator one. In this case, S is called a generalized Drazin inverse

of T , denoted by TD. Examples of generalized Drazin invertible operators are the operators of the following

classes:

• Invertible operators, right invertible operators and left invertible operators.

• Left Drazin invertible operators,

LD(H) = {T ∈ B(H) : a(T ) is finite and R(T a(T )+1) is closed}.

• Right Drazin invertible operators,

RD(H) = {T ∈ B(H) : d(T ) is finite and R(T d(T )) is closed}.

• Drazin invertible operators,

LD(H) ∩RD(H).

According to the Definitions 1.1 and 1.2, we also have

Right (resp. Left) invertible operator =⇒ Right (resp. Left) Drazin invertible operator =⇒ Right (resp.

Left) generelazed Drazin invertible operator.

The left Drazin spectrum, the right Drazin spectrum, the Drazin spectrum, the generalized Drazin spec-

trum, the left generalized Drazin spectrum and the right generalized Drazin spectrum of T are, respectively,

defined by

σlD(T ) := {λ ∈ C : T − λI /∈ LD(H)},

σrD(T ) := {λ ∈ C : T − λI /∈ RD(H)},

σD(T ) = {λ ∈ C : T − λI /∈ LD(H) ∩RD(H)},

σgD(T ) = {λ ∈ C : T − λI is not generalized Drazin invertible operator},

σlgD(T ) := {λ ∈ C : T − λI is not left generalized Drazin invertible},

and

σrgD(T ) := {λ ∈ C : T − λI is not right generalized Drazin invertible}.
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It is well known that these spectra are compact sets in the complex plane, and we have,

σgD(T ) = σlgD(T ) ∪ σrgD(T ) ⊂ σD(T ) = σlD(T ) ∪ σrD(T ),

σlgD(T ) ⊂ σlD(T ) ⊂ σap(T ),

and

σrgD(T ) ⊂ σrD(T ) ⊂ σsu(T ),

where

σap(T ) := {λ ∈ C : T − λI is not bounded below }

and

σsu(T ) := {λ ∈ C : T − λI is not surjective}

are respectively the approximate point spectrum and the surjective spectrum of T .

The basic existence results of generalized Drazin inverses and its relation to the quasi-nilpotent part and

the analytical core are summarized in the following theorems.

Theorem 1.1 ( [18]). Assume that T ∈ B(H). The following assertions are equivalent:

(i) T is generalized Drazin invertible,

(ii) 0 is an isolated point in the spectrum σ(T ) of T ;

(iii) K(T ) is closed and H = K(T )⊕H0(T ),

(iv) H0(T ) is closed and H = K(T )⊕H0(T ),

(v) there is a bounded projection P on H such that R(P ) = K(T ) and N(P ) = H0(T ).

(vi) T = T1 ⊕ T2, with T1 = TK(T ) is invertible operator and T2 = TH0(T ) is quasi-nilpotent operator.

⊕ denotes the algebraic direct sum and TM denote the restriction of T to a subspace M of H.

Theorem 1.2. Assume that T ∈ B(H). The following assertions are equivalent:

(i) T is left generalized Drazin invertible;

(ii) 0 is an isolated point in σap(T );

(iii) T = T1 ⊕ T2, with T1 = TM is left invertible operator and T2 = TH0(T ) is quasi-nilpotent operator.

Proof. The equivalence [(i)]⇐⇒[(iii)] follows by [24, Proposition 3.2] and the implication [(i)]=⇒[(ii)] follows

from [24, Theorem 3.8]. Now, if 0 is an isolated point in σap(T ), then by [23, Theorem 4.4] 0 is a singularity

of the generalized resolvent, equivalently, T admits a generalized Kato decomposition (M,N), and since T

has the SVEP at 0, it follows from [1, Theorem 3.14] that TM is injective and H0(T ) = N . This proved the

implication [(ii)]=⇒[(i)] and hence [(i)]⇐⇒[(ii)]. �
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We know that the properties to be right generalized Drazin invertible or to be left generalized Drazin

invertible are dual each other, (see [24, Proposition 3.9]), then we have,

Theorem 1.3. Let T ∈ B(H). The following assertions are equivalent:

(i) T is right generalized Drazin invertible;

(ii) 0 is an isolated point in σsu(T );

(iii) T = T1 ⊕ T2, with T1 = TK(T ) is right invertible operator and T2 = TN is quasi-nilpotent operator.

The reduced minimum modulus γ(T ) of T is defined by

γ(T ) =

 inf{‖Tx‖ : dis(x,N(T )) = 1} if T 6= 0

0 if T = 0

and dis(x,N(T )) = inf{‖x− z‖ such that z ∈ N(T )}. It is well known that γ(T ) > 0 if and only if R(T ) is

closed.

The paper is organized as follows. In Section 2 we give a relationship between the quasi-nilpotent part

and the analytical core of a pair (A,B) of operators and that of 2 × 2 block triangular matrices MC , we

show that the quasi-nilpotent part of MC is a direct sum of the quasi-nilpotent part of A and B and that

is the same for analytical core. In Section 3, we study the left (resp. right) generalized Drazin invertibility

of MC using the isolated point in the approximate spectrum (resp. the surjective spectrum) of A and B.

Finally in section 4 we illustrate our approach by studying a boundary value problems described by an upper

triangular operator matrices.

2. The quasi-nilpotent part and the analytical core of the operator MC

In the following, we find the relationship between the quasi-nipotent part (resp. the analytical core) of

the pair (A,B) of operators and that of MC defined in (1.1) and we give fundamental results concerning this

operator.

Proposition 2.1. If R(C) ⊂ H0(A), then

H0(MC) = H0(A)⊕H0(B).

Proof. Suppose that

 x

y

 ∈ H0(A) ⊕ H0(B) and consider H × K the product Hilbert space equipped

with the norm ∥∥∥∥∥∥
 x

y

∥∥∥∥∥∥
2

= ‖x‖2 + ‖y‖2 .
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We have ∥∥∥∥∥∥Mn
C

 x

y

∥∥∥∥∥∥
2

= ‖Anx+ Sy‖2 + ‖Bny‖2 ,

with

S = An−1C +An−2CB + · · ·+ACBn−2 + CBn−1.

Then ∥∥∥∥∥∥Mn
C

 x

y

∥∥∥∥∥∥
2
n

≤ ‖Anx‖
2
n + ‖Bny‖

2
n + ‖Sy‖

2
n .

Therefore,

‖S‖
2
n ≤

∑
p+k=n−1

∥∥ApCBky∥∥ 2
n .

If p→∞ then n→∞ and since R(C) ⊂ H0(A), we obtain limn→∞ ‖S‖
2
n = 0. It follows that

limn→∞

∥∥∥∥∥∥Mn
C

 x

y

∥∥∥∥∥∥
2
n

= 0. Hence

 x

y

 ∈ H0(MC).

Let now

 x

y

 ∈ H0(MC). It is clear that

∥∥∥∥∥∥Mn
C

 x

0

∥∥∥∥∥∥
2
n

= ‖Anx‖
2
n and

∥∥∥∥∥∥Mn
C

 0

y

∥∥∥∥∥∥
2
n

≥ ‖Bny‖
2
n .

Then limn→∞ ‖Anx‖
2
n = 0 and limn→∞ ‖Bny‖

2
n = 0. Thus x ∈ H0(A) and y ∈ H0(B). �

Proposition 2.2. If R(B) ⊂ N(C), then

K(MC) = K(A)⊕K(B).

Proof. Let x ∈ K(A) and y ∈ K(B), by definition there exist two sequences (xn) in H, (yn) in K and a

constants δ1 > 0, δ2 > 0 such that Ax1 = x,Axn+1 = xn and ‖xn‖ ≤ δn1 ‖x‖ and By1 = y,Byn+1 = yn and

‖yn‖ ≤ δn2 ‖y‖ for all n ∈ N.

We have

MC

 xn+1

yn+1

 =

 Axn+1 + Cyn+1

Byn+1

 =

 xn + CByn+2

yn

 .

Since R(B) ⊂ N(C), it follows that

MC

 xn+1

yn+1

 =

 xn

yn

 and MC

 x1

y1

 =

 x

y

 . (2.1)

Furthermore ∥∥∥∥∥∥
 xn

yn

∥∥∥∥∥∥ ≤ δn
∥∥∥∥∥∥
 x

y

∥∥∥∥∥∥ ,
where δ = max(δ1, δ2). Hence

 x

y

 ∈ K(MC).
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Conversely, suppose that

 x

y

 ∈ K(MC). Then there exist a sequence

 xn

yn

 in H×K and a constant

δ > 0 such that MC

 x1

y1

 =

 x

y

, MC

 xn+1

yn+1

 =

 xn

yn

 and

∥∥∥∥∥∥
 xn

yn

∥∥∥∥∥∥ ≤ δn
∥∥∥∥∥∥
 x

y

∥∥∥∥∥∥ for all

n ∈ N.

We obtain from (2.1) that Byn+1 = yn, Axn+1 = xn, Ax1 = x and By1 = y.

Consequently, ‖xn‖ ≤ δn‖x‖ and ‖yn‖ ≤ δn‖y‖, that is

 x

y

 ∈ K(A) ⊕ K(B). This completes the

proof. �

As a consequence of Propositions 2.1 and 2.2 we have the following result.

Corollary 2.1. If R(C) ⊂ H0(A) and R(B) ⊂ N(C). Then MC is generalized Drazin invertible if and only

if both A and B are generalized Drazin invertible.

3. Left and right generalized Drazin invertibility of MC

Hwang and Lee , [13], give a necessary and sufficient condition for MC to be bounded below for some

C ∈ B(K,H) and they are characterized the intersection of the approximate point spectrum, the surjective

spectrum and the spectrum of MC .

The next theorem is an extension of [13, Theorem 1], we will give some necessary and sufficient conditions

for MC to be left generalized Drazin invertible operator for some C ∈ B(K,H).

Theorem 3.1. For a given pair (A,B) of bounded operators, the following statements are equivalent:

(i) MC is left generalized Drazin invertible for some C ∈ B(K,H),

(ii) A is left generalized Drazin invertible and there exists a constant δ such that
α(B − λI) ≤ β(A− λI) if R(B − λI) is closed,

or

β(A− λI) =∞ if R(B − λI) is not closed,

with 0 < |λ| < δ.

To prove this theorem we need the following lemma.

Lemma 3.1. Let T1, T2 and T3 ∈ B(H) be ginven such that T2 is invertible. If α(T1) <∞ and R(T1T2T3)

is closed, then R(T3) is also closed.

Proof. Follows from [12, Theorem 1]. �

Proof of Theorem 3.1. We first claim that if A is left generalized Drazin invertible and there exists a constant

δ such that for every λ with 0 < |λ| < δ, R(B − λI) is closed, then α(B − λI) ≤ β(A − λI) is equivalent
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to MC is left generalized Drazin invertible for some C ∈ B(K,H). Indeed, since A is left generalized Drazin

invertible, then by Theorem 1.2, A− λI is bounded below for 0 < |λ| < δ.

Assume that α(B−λI) ≤ β(A−λI). Then there exists an isometry J : N(B−λI)→ R(A−λI)⊥. Define

an operator C : K → H by

C :=

 J 0

0 0

 :

 N(B − λI)

N(B − λI)⊥

→
 R(A− λI)⊥

R(A− λI)

 .

Let

 x

y

 ∈ N(MC − λI). Then

(MC − λI)

 x

y

 =

 0

0

 ;

implies that (A−λI)x+Cy = 0 and (B−λI)y = 0. Since A−λI is injective and the fact that N(C−λI) ⊆

N(B − λI)⊥, we get x = 0 and y = 0. Then MC − λI is injective.

Now we prove that R(MC − λI) is closed. Let

 x

y

 ∈ N(MC − λI)⊥. Then

∥∥∥∥∥∥(MC − λI)

 x

y

∥∥∥∥∥∥
2

= ‖(A− λI)x+ Cy‖2 + ‖(B − λI)y‖2

= ‖(A− λI)x‖2 + ‖Cy‖2 + ‖(B − λI)y‖2 .

Write y := y1 + y2, where y1 ∈ N(B − λI) and y2 ∈ N(B − λI)⊥. Then ‖Cy‖ = ‖y1‖, ‖(A− λI)x‖ ≥

γ(A− λI) ‖x‖ and ‖(B − λI)y2‖ ≥ γ(B − λI) ‖y2‖ , because R(B − λI) and R(A− λI) are closed. Hence∥∥∥∥∥∥(MC − λI)

 x

y

∥∥∥∥∥∥
2

≥ γ2(A− λI) ‖x‖2 + ‖y1‖2 + γ2(B − λI) ‖y2‖2

≥ min(γ2(A− λI), γ2(B − λI), 1)

∥∥∥∥∥∥
 x

y

∥∥∥∥∥∥
2

.

Then γ(MC − λI) > 0 and (MC − λI) is bounded below for 0 < |λ| < δ. It follows from Theorem 1.2 that

MC is left generalized Drazin invertible.

Conversely, It suffices to show that if (A− λI) is bounded below with α(B − λI) > β(A− λI) for λ ∈ C,

then (MC − λI) is not bounded below.

Assume that α(B − λI) > β(A− λI), so β(A− λI) <∞. We now consider the following two cases.

Case (1). If N(C) ∩ N(B − λI) 6= {0}. Then for all non-zero vector z ∈ N(C) ∩ N(B − λI) we have

(MC − λI)z = 0. We conclude that (MC − λI) is not bounded below.

Case (2). Suppose that N(C) ∩ N(B − λI) = {0}. Then dim(C(N(B − λI))) = α(B − λI) > β(A − λI).
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Thus, C(N(B − λI)) ∩R(A− λI) 6= {0}. We take a non-zero vector z ∈ C(N(B − λI)) ∩R(A− λI). Then

there exist some x ∈ H and y ∈ K such that (A − λI)x = Cy = z and (B − λI)y = 0. Direct calculation

shows that (MC − λI)

 −x
y

 = 0. It follows that (MC − λI) is not bounded below.

We next claim that if A is left generalized Drazin invertible and there exists a constant δ such that for

every λ with 0 < |λ| < δ, R(B−λI) is not closed, then β(A−λI) =∞ is equivalent to MC is left generalized

Drazin invertible for some C ∈ B(K,H). Since R(B − λI) is not closed and β(A− λI) =∞, there exists an

isomorphism J : K → R(B − λI). Define an operator C : K → H in the following way:

C :=
(
J 0

)
: K →

 R(A− λI)⊥

R(A− λI)

 .

By a similar proof we check easily that N(MC − λI) = {0} and γ(MC − λI) > 0. That is (MC − λI) is

bounded below for 0 < |λ| < δ and by Theorem 1.2 MC is left generalized Drazin invertible.

For the converse, suppose in the contrary that β(A− λI) <∞. Then

dimN

 (A− λI)∗ 0

0 I

 = dimN((A− λI)∗) = β(A− λI) <∞.

SinceR((MC−λI)∗) is closed and

 I 0

C∗ I

 is invertible, by Lemma 3.1, we have thatR

 I 0

0 (B − λI)∗


is closed, that is R((B − λI)∗) is closed. This contradicts our assumption. Therefore we must have

β(A− λI) =∞. �

By duality, we have:

Theorem 3.2. For a given pair (A,B) of operators, the following statements are equivalent:

(i) MC is right generalized Drazin invertible for some C ∈ B(K,H),

(ii) B is right generalized Drazin invertible and there exists a constant δ such that
β(A− λI) ≤ α(B − λI) if R(A− λI) is closed,

or

α(B − λI) =∞ if R(A− λI) is not closed,

with 0 < |λ| < δ.

As a direct application of Theorem 3.1, the following corollary can be derived to give a characterization

of σlgD(MC) for all C ∈ B(K,H).
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Corollary 3.1.

⋂
C∈B(K,H)

σlgD(MC) =

σlgD(A)
⋃
{λ ∈ C : R(B − λI) is closed and β(A− λI) < α(B − λI)}⋃
{λ ∈ C : R(B − λI) is not closed and β(A− λI) <∞} .

The following is the dual statement of Corollary 3.1.

Corollary 3.2.

⋂
C∈B(K,H)

σrgD(MC) =

σrgD(B)
⋃
{λ ∈ C : R(A− λI) is closed and β(A− λI) > α(B − λI)}⋃
{λ ∈ C : R(A− λI) is not closed and α(B − λI) <∞} .

By combining Corollaries 3.1 and 3.2 we obtain;

Corollary 3.3.

⋂
C∈B(K,H)

σgD(MC) = σlgD(A)
⋃
σrgD(B)

⋃
{λ ∈ C : β(A− λI) 6= α(B − λI)} .

This result gives a generalization of [4, Theorem 2.1].

4. Application to a spectral boundary value matrix problem

This section is devoted to the study of boundary value problems described by an upper triangular operator

matrices (2× 2) acting in Hilbert spaces with a complex spectral parameter λ,

(P)


(UL − λMC)w = F

Γw = Φ

,

where F and Φ are given and UL is the matrix operator defined on H ⊕K by

UL =

 T L

0 D

 ,

with L : K → H a given linear operator. We first define the boundary value problem (P) by ordered pairs

(UL,MC) of an upper triangular operator matrix MC where UL is a right generalized Drazin invertible and

we construct the adapted boundary operator Γ of UL. We prove the existence of an unique solution of (P)

and we give an explicit expression for this solution. Before this down, we define the boundary operator for

a right generalized Drazin invertible operator.
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If S be a right generalized Drazin inverse of the operator A ∈ B(H), then

K(A) = (R(S) ∩K(A))⊕ (N(A) ∩K(A)). (4.1)

Now, let E another complex Hilbert space, called boundary space.

Definition 4.1. An operator Γ : H → E is said to be a boundary operator for a right generalized Drazin

invertible operator A corresponding to its right generalized Drazin inverse S ∈ B(H) if,

(i) K(A) ⊂ N(Γ);

(ii) There exists an operator Π : E → H such that ΓΠ = IE and R(Π) = N(A) ∩K(A).

Theorem 4.1. Let A ∈ B(H) be a right generalized Drazin invertible operator with a right generalized Drazin

inverse S. An operator Γ : H −→ E is a boundary operator for A corresponding to S if and only if there

exists a unique operator Π : E −→ H, as in the Definition 4.1, such that

ΠΓx = x− SAx, for all x ∈ K(A). (4.2)

Proof. Let Γ : H −→ E be a boundary operator for A corresponding to S, then there exists Π : E −→ H

satisfying the conditions of the Definition 4.1. Let z = x−SAx, then x = z+SAx, sinse SAx ∈ R(S)∩K(A)

and x ∈ K(A) we have z ∈ N(A) ∩ K(A), then x − SAx ∈ R(Π), thus there exists ϕ ∈ E such that

x− SAx = Πϕ. Since N(Γ) ⊂ K(A) and ΓΠ = IE , we have Γ(x− SAx) = ΓΠϕ and ϕ = Γx, which implies

(4.2).

The uniqueness of Π is directly obtained.

Conversely, suppose that Γ and Π satisfies the identity (4.2). Then AΠΓx = 0, for all x ∈ K(A), so AΠ = 0

on E. Moreover,

ΠΓΠΓx = ΠΓx− SAΠΓx = ΠΓx.

Hence ΓΠΓΠΓx = ΓΠΓx, so ΓΠϕ = ϕ for all ϕ ∈ E, by taking ϕ = ΓΠΓx. Finally, we have ΓSAx =

Γx− ΓΠΓx = 0. Thus K(A) ⊂ N(Γ) �

Remark 4.1. If Γ is a boundary operator for a right generalized Drazin invertible operator A corresponding

to its right generalized Drazin inverse S, then

K(A) = (R(S) ∩K(A))⊕R(Π). (4.3)

Proposition 4.1 ( [15]). Let A,B ∈ B(H). Then (I−λAB) is invertible if and only if (I−λBA) is invertible

for all λ 6= 0.

In this case, we have

(I − λBA)−1 = I + λB(I − λAB)−1A, (4.4)



Int. J. Anal. Appl. 17 (1) (2019) 117

and

(I − λAB)−1 = I + λA(I − λBA)−1B. (4.5)

Corollary 4.1. Let A, B ∈ B(H). If λ−1 ∈ ρ(AB) then

(I − λAB)−1A = A(I − λBA)−1.

Proposition 4.2. Let UL =

 T L

0 D

 defined on H ⊕K. Assume that S1 and S2 are right generalized

Drazin inverses of T and D respectively. Γ1 and Γ2 are boundary operators for T and D with the boundary

spaces E and Z; respectively. If N(D) ⊂ N(L) then the operator Γ =

 Γ1 0

0 Γ2

 from H ⊕K into E⊕Z

is a boundary operator for UL.

Proof. We have that K(T ) ⊂ N(Γ1), K(D) ⊂ N(Γ2) and there exist Π1 : E → H and Π2 : Z −→ K

such that Γ1Π1 = IE , R(Π1) = N(T ) ∩ K(T ) and Γ2Π2 = IZ , R(Π2) = N(D) ∩ K(D). Denote by

Π =

 Π1 0

0 Π2

 : E ⊕ Z −→ H ⊕K.

Since T and D are right generalized Drzain invertibles, then so is UL, hence K(UL) = K(T ) ⊕K(D), that

is K(UL) ⊂ N(Γ) and ΓΠ = IE⊕Z .

The condition N(D) ⊂ N(L) implies that

N(UL) ∩K(UL) = (N(T )⊕N(D)) ∩ (K(T )⊕K(D))

= N(T ) ∩K(T )⊕N(D) ∩K(D) = R(Π).

�

Consider the operator UL defined as above and let A ∈ B(H) and B ∈ B(K) be given bounded operators

on separable Hilbert spaces H and K, and MC defined on H ⊕K by (1.1). We define the following spectral

boundary value matrix problem for unknown w ∈ K(T )×K(D) by

(P)


(UL − λMC)w = F

Γw = Φ

,

where F ∈ K(T )×K(D), Φ ∈ E×Z and λ ∈ C is a spectral parameter. We denote Rλ[S1A] = (IH−λS1A)−1

and Rλ[S2A] = (IK − λS2A)−1, S1 and S2 are right generalized Drazin inverses of T and D, respectively.

Our purpose is to establish the existence and uniqueness of solutions for the boundary value problem (P).

In the theorem below, we give an explicit expression for the solution of the problem (P).
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Theorem 4.2. If λ−1 ∈ ρ(S1A) ∩ ρ(S2B), the boundary value problem (P) is uniquely solvable for any

F ∈ K(T )×K(D) and Φ ∈ E × Z, the solution is given by

wF,Φλ = G(SF + ΠΦ),

where S =

 S1 0

0 S2

 and G =

 Rλ[S1A] −S1Rλ[S1A](L− λC)Rλ[S2B]

0 Rλ[S2B]

.

Proof. We have (UL − λMC)wF,Φλ = (UL − λMC)GSF + (UL − λMC)GΠΦ. Firstly, we calculate (UL −

λMC)GSF.

(UL − λMC)GSF =

(UL − λMC)

 Rλ[S1A] −S1Rλ[S1A](L− λC)Rλ[S2B]

0 Rλ[S2B]

 S1f1

S2f2


=

 (T − λA) (L− λC)

0 (D − λB)

 Rλ[S1A]S1f1 − S1Rλ[S1A](L− λC)Rλ[S2B]S2f2

Rλ[S2B]S2f2


=

 (T − λA)S1Rλ[AS1]f1

(D − λB)S2Rλ[BS2]f2

 = F,

and

(UL − λMC)GΠΦ =


(T − λA)[Rλ[S1A]Π1ϕ1 − S1Rλ[S1A](L− λC)Rλ[S2B]Π2ϕ2]

+(L− λC)Rλ[S2B]Π2ϕ2

(D − λB)Rλ[S2B]Π2ϕ2



=

 (T − λA)Rλ[S1A]Π1ϕ1

(D − λB)Rλ[S2B]Π2ϕ2


=

 (T − λA)[IH + λS1Rλ[AS1]A]Π1ϕ1

(D − λB)[IK + λS2Rλ[BS2]B]Π2ϕ2


=

 (T − λA)Π1ϕ1 + λAΠ1ϕ1

(D − λB)Π2ϕ2 + λBΠ2ϕ2

 .
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Then (UL − λMC)GΠΦ = 0 since R(Π1) = N(T ) ∩K(T ) and R(Π2) = N(D) ∩K(D). Using the fact that

K(T ) ⊂ N(Γ1) and K(D) ⊂ N(Γ2), we obtain,

ΓwF,Φλ = ΓG(SF + ΠΦ)

=

 Γ1 0

0 Γ2

 Rλ[S1A]S1f1 − S1Rλ[S1A](L− λC)Rλ[S2B]S2f2

Rλ[S2B]S2f2


+

 Γ1 0

0 Γ2

 Rλ[S1A]Π1ϕ1 − S1Rλ[S1A](L− λC)Rλ[S2B]Π2ϕ2

Rλ[S2B]Π2ϕ2



=

 Γ1Rλ[S1A]Π1ϕ1 − Γ1S1Rλ[S1A](L− λC)Rλ[S2B]Π2ϕ2

Γ2Rλ[S2B]Π2ϕ2



=

 Γ1[IH + λS1Rλ[AS1]A]Π1ϕ1

Γ2[IK + λS2Rλ[BS2]B]Π2ϕ2



=

 Γ1Π1ϕ1

Γ2Π2ϕ2

 = Φ.

The uniqueness of the solution of (P) follows from standard arguments. That is, if w1, w2 ∈ K(T )×K(D)

are two solutions of (P), assume that w0 = w1 − w2 =

 u0

v0

 =

 S1f0 + Π1ϕ0

S2g0 + Π2ψ0

 with some f0 ∈

K(T ), g0 ∈ K(D), ϕ0 ∈ E and ψ0 ∈ Z. Thus,


(UL − λMC)w0 = 0

Γw0 = 0

.

Since K(UL) ⊂ N(Γ) and ΓΠ = IE⊕Z , the second identity gives

 ϕ0

ψ0

 =

 0

0

 . Then u0 = S1f0 and

v0 = S2g0. So,

0 = (UL − λMC)w0 =

 (T − λA) (L− λC)

0 (D − λB)

 S1f0

S2g0


=

 (T − λA)S1f0 + (L− λC)S2g0

(D − λB)S2g0

 .

Then, f0 = g0 = 0, since λ−1 ∈ ρ(S1A)∩ρ(S1B), f0 ∈ K(T ) and g0 ∈ K(D). Hence w1 = w2. This complete

the proof. �
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