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ABSTRACT. When A € B(H) and B € B(K) are given, we denote by M¢ the operator on the Hilbert
A

C
space H @& K of the form Mqc = . In this paper we investigate the quasi-nilpotent part and
0 B

the analytical core for the upper triangular operator matrix M¢ in terms of those of A and B. We give
some necessary and sufficient conditions for M to be left or right generalized Drazin invertible operator for
some C' € B(K, H). As an application, we study the existence and uniqueness of the solution for abstract
boundary value problems described by upper triangular operator matrices with right generalized Drazin

invertible component.
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1. INTRODUCTION AND PRELIMINARIES

Let B(H) be the Banach algebra of all bounded linear operators acting on an infinite-dimensional complex
Hilbert space H. Associated with an operator T there are two (not necessarily closed) linear subspaces of H
invariant by T, played an important role in the development of the generalized Drazin inverse for T € B(H),

the quasi-nilpotent part Ho(T) of T

Ho(T) = {m € H: lim |T
n— oo

t oo

and the analytical core K(T) of T

K(T) ={x € H : there exist a sequence (z,,) in H and a constant § > 0

such that Txy =z, Tap 41 =z, and ||z, ]| < §"||z| for all n € N}.

See also [1]. Tt is well-known that if K(T) and Hy(T) are both closed, H = Ho(T) & K(T), the restriction
of T to Hy(T) is a quasi-nilpotent operator, and the restriction of T' to K(T) is invertible, provided that T'
is generalized Drazin invertible, (c.f. [18]). Recently, by the use of this two subspaces, in [24], the authors
defined and studied a new class of operators called left and right generalized Drazin invertible operators as

a generalization of left and right Drazin invertible operators.

Definition 1.1. An operator T € B(H) is said to be right generalized Drazin invertible if K(T') is closed
and complemented with a subspace N in H such that T(N) C N C Hy(T).

Definition 1.2. An operator T € B(H) is said to be left generalized Drazin invertible if Hy(T) is closed and
complemented with a subspace M in H such that T(M) C M and T(M) is closed.

We also proved that T € B(H) is a right generalized Drazin invertible if and only if 0 is an isolated point
on the surjective spectrum o4, (T) of T and by duality T' € B(H) is a left generalized Drazin invertible if
and only if 0 is an isolated point on the approximate spectrum og,(7"). So we are mainly interested in the
case where the point 0 belongs to the spectrum o(7') of T or in its various distinguished parts. Here, we are

interested in the analogous question for an upper triangular operator of the form

A C
Me = . (1.1)
0 B

defined on the separable Hilbert space H @& K. Recall that the problem of the relationship between the
spectrum, various distinguished parts of the spectrum of an upper triangular and Drazin invertibility and its
diagonal has been considered by a number of authors in the recent past, we can see [4,5,13,21,22,28-30] and

the references therein for recent reviews on this topic. A related, and seemingly more demanding, problem
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is the following. Let H be a Hilbert space, T is a bounded linear operator on H, and M is a T-invariant

closed subspace of H, then T takes the form

T = Mo M-S Mae Mt

which motivated the interest in 2 X 2 upper-triangular operator matrices.

In this paper we use the results of [24] to give a necessary and sufficient conditions for M¢ to be left (resp.
right) generalized Drazin invertible which generalizes the notion of generalized Drazin invertible operators
to the matrix case. We characterize the quasi-nilpotent part and the analytical core of the operator M in
term of the pair (A4, B) of bounded operators. We apply our results to study the existence and uniqueness
of solutions of boundary value problems described by an upper triangular operator matrices (2 x 2) acting
in Hilbert spaces with a complex spectral parameter X :

(U, — AM¢e)w=F

(P) ;
Tw=2%®

where Uy, is right generalized Drazin invertible, I' is a boundary operator, F' and ® are given.

For T € B(H) write N(T), R(T), o(T) and p(T) respectively, the null space, the range, the spectrum and
the resolvent set of T'. The nullity and the deficiency of T are defined respectively by «(T) = dimN(T') and
B(T) = dimH/R(T). Here I denotes the identity operator in H. By isoo(T) and acco(T') we define the set
of all isolated and accumulation spectral points of T'.

If M is a subspace of H then T); denote the restriction of 7" in M. Assume that M and N are two
subspaces of H such that H = M @ N (that is H = M + N and M NN = 0). We say that T is completely
reduced by the pair (M, N), denoted as (M, N) € Red(T),f T(M) C M, T(N)C Nand T =Ty &Ty. In
such case we have N(T) = N(Ty) @ N(In), R(T) = RTm)® R(ITn) and T =T}, & TR for all n € N. An
operator is said to be bounded below if it is injective with closed range.

Recall that (see, e.g. [14]) the ascent a(T) of an operator T € B(H) is defined as the smallest nonnegative
integer p such that N(T?) = N(TP*!). If no such an integer exists, we set a(T) = oco. Analogously, the
smallest nonnegative integer ¢ such that R(T7) = R(T9!) is called the descent of T and denoted by d(T).
We set d(T) = oo if for each g, R(T%"!) is a proper subspace of R(T?). It is well known that if the
ascent and the descent of an operator are finite, then they are equal. Furthermore, if a(T) = p < oo then
Ho(T) = N(T?) and if d(T) = q < 0o then K(T) = R(T9).

An operator T' € B(H) is said to be Drazin invertible, if there exists an operator S € B(H) such that

ST =TS STS=S5andTST =T+ U where U is a nilpotent operator. (1.2)
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The concept of Drazin invertible operators has been generalized by Koliha ( [18]) by replacing the nilpotent
operator U in (1.2) by a quasi-nilpotent operator one. In this case, S is called a generalized Drazin inverse
of T, denoted by TP. Examples of generalized Drazin invertible operators are the operators of the following

classes:

Invertible operators, right invertible operators and left invertible operators.

e Left Drazin invertible operators,

LD(H) ={T € B(H) : a(T) is finite and R(T*"*1) is closed}.

Right Drazin invertible operators,
RD(H) = {T € B(H) : d(T) is finite and R(T*")) is closed}.

e Drazin invertible operators,
LD(H)N RD(H).

According to the Definitions 1.1 and 1.2, we also have

Right (resp. Left) invertible operator = Right (resp. Left) Drazin invertible operator = Right (resp.
Left) generelazed Drazin invertible operator.

The left Drazin spectrum, the right Drazin spectrum, the Drazin spectrum, the generalized Drazin spec-
trum, the left generalized Drazin spectrum and the right generalized Drazin spectrum of T' are, respectively,
defined by

op(T):={AeC:T—-X¢ LD(H)},

orp(T):={AeC:T -\ ¢ RD(H)},

op(T)={ e C:T—- A ¢ LD(H)NRD(H)},

04p(T) = {A € C: T — AI is not generalized Drazin invertible operator},

o1gp(T) :={A € C: T — A is not left generalized Drazin invertible},

and

orgp(T) = {A € C: T — Al is not right generalized Drazin invertible}.
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It is well known that these spectra are compact sets in the complex plane, and we have,

04p(T) = 019p(T) U 0rgp(T) C op(T) = oyp(T) U orp(T),

01gp(T) C oip(T) C 04p(T),

and
orgp(T) C orp(T) C 050 (T),
where
0ap(T) :={X € C: T — A is not bounded below }
and

osu(T) :={A € C: T — A is not surjective}
are respectively the approximate point spectrum and the surjective spectrum of 7.

The basic existence results of generalized Drazin inverses and its relation to the quasi-nilpotent part and

the analytical core are summarized in the following theorems.

Theorem 1.1 ( [18]). Assume that T € B(H). The following assertions are equivalent:

(i) T is generalized Drazin invertible,

(ii) 0 is an isolated point in the spectrum o(T) of T;

(iil) K(T) is closed and H = K(T) ® Ho(T),

(iv) Ho(T) is closed and H = K(T) @ Hy(T),

(v) there is a bounded projection P on H such that R(P) = K(T) and N(P) = Hy(T).
)

(vi) T =T, © Ty, with Ty = Tk (r) is invertible operator and Ty = Ty, (1) is quasi-nilpotent operator.

@ denotes the algebraic direct sum and Th; denote the restriction of T to a subspace M of H.

Theorem 1.2. Assume that T € B(H). The following assertions are equivalent:
(i) T is left generalized Drazin invertible;
(ii) O is an isolated point in qp(T);

(iii) T =T1 © T, with Ty = Ty is left invertible operator and Ty = Ty (y is quasi-nilpotent operator.

Proof. The equivalence [(i)]<=>(iii)] follows by [24, Proposition 3.2] and the implication [(i)]=>[(ii)] follows
from [24, Theorem 3.8]. Now, if 0 is an isolated point in o,,(T), then by [23, Theorem 4.4] 0 is a singularity
of the generalized resolvent, equivalently, 7' admits a generalized Kato decomposition (M, N), and since T'
has the SVEP at 0, it follows from [1, Theorem 3.14] that Ths is injective and Ho(T') = N. This proved the

implication [(ii)]=>[(i)] and hence [(i)]<=[(ii)]. O
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We know that the properties to be right generalized Drazin invertible or to be left generalized Drazin

invertible are dual each other, (see [24, Proposition 3.9]), then we have,

Theorem 1.3. Let T € B(H). The following assertions are equivalent:

(i) T is right generalized Drazin invertible;
(i1) 0 is an isolated point in o4, (T);

(iii) 7' =Ty © Tz, with Ty = Tk () is right invertible operator and Ty = Ty is quasi-nilpotent operator.

The reduced minimum modulus v(T") of T is defined by

inf{||Tz|| : dis(z, N(T)) =1} ifT#0
0 ifT=0

and dis(z, N(T')) = inf{||x — z|| such that z € N(T')}. It is well known that «(7") > 0 if and only if R(T) is

closed.

The paper is organized as follows. In Section 2 we give a relationship between the quasi-nilpotent part
and the analytical core of a pair (A, B) of operators and that of 2 x 2 block triangular matrices M¢, we
show that the quasi-nilpotent part of M¢ is a direct sum of the quasi-nilpotent part of A and B and that
is the same for analytical core. In Section 3, we study the left (resp. right) generalized Drazin invertibility
of M¢ using the isolated point in the approximate spectrum (resp. the surjective spectrum) of A and B.
Finally in section 4 we illustrate our approach by studying a boundary value problems described by an upper

triangular operator matrices.

2. THE QUASI-NILPOTENT PART AND THE ANALYTICAL CORE OF THE OPERATOR Mg

In the following, we find the relationship between the quasi-nipotent part (resp. the analytical core) of
the pair (A, B) of operators and that of M defined in (1.1) and we give fundamental results concerning this

operator.

Proposition 2.1. If R(C) C Ho(A), then

Hy(Mc¢) = Ho(A) ® Ho(B).

x
Proof. Suppose that € Hyo(A) @ Ho(B) and consider H x K the product Hilbert space equipped

with the norm

2
T 2 2
= llz[I” + Iyl
Yy
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We have )
n z n 2 n 12
M¢ = [[A"z + SylI” + [|B"yl|”,
Y
with
S=A""'C+ A" 2CB+---+ ACB" 2+ CB" .
Then
2
n z n 2 n N2 2
Mg < [|A"[|™ +[[B"y[ " + [|Syll" .
Y
Therefore,

ISIF < S areBry||t

p+k=n—1

If p — oo then n — oo and since R(C) C Hy(A), we obtain lim,, ||S||727 = 0. It follows that

2
n

X X
limy, o0 | ME = 0. Hence € Ho(Mc).
Y Y
X X ! 2 0 ! 2
Let now € Ho(Mc). It is clear that || Mp = ||A™z||™ and || M& > | B™y||™ .
Yy 0 Y
Then lim,_o0 A2 % = 0 and lim,_o | B"y||* = 0. Thus z € Ho(A) and y € Ho(B). O

Proposition 2.2. If R(B) C N(C), then
K(Mc)=K(A)® K(B).

Proof. Let v € K(A) and y € K(B), by definition there exist two sequences (x,) in H, (y,) in K and a
constants 6; > 0, d2 > 0 such that Ax; = &, Azp41 = zp, and ||z,]| < 67||z|| and Byr = y, Byn+1 = yn and
lynll < 0% |ly|| for all n € N.

We have

Ln41 Axn+1 + Cyn—i-l Tn + CByn+2
MC = =

Yn+1 Byn+1 Yn
Since R(B) C N(C), it follows that

T T T T
Mo | TN = and Mg - . (2.1)
Yn+1 Yn Y1 Yy
Furthermore
<ol )
Yn Y

x
where § = max(dy,d2). Hence € K(Mc¢).
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x x
Conversely, suppose that € K(M¢). Then there exist a sequence " | in H x K and a constant
Yy Yn
x1 x Tpi1 T T T
§ > 0 such that Mg = Mo [ T = 7" ] and " <om for all
Y1 Yy Yn+1 Yn Yn Yy

n € N.

We obtain from (2.1) that By,+1 = yn, ATpy1 = @, Ax; = x and By, = y.

x
Consequently, ||z,| < 6"|z] and [ly,| < 6"|yll, that is € K(A) ® K(B). This completes the
proof. O

As a consequence of Propositions 2.1 and 2.2 we have the following result.

Corollary 2.1. If R(C) C Ho(A) and R(B) C N(C). Then Mc¢ is generalized Drazin invertible if and only

if both A and B are generalized Drazin invertible.

3. LEFT AND RIGHT GENERALIZED DRAZIN INVERTIBILITY OF Mg

Hwang and Lee , [13], give a necessary and sufficient condition for M¢ to be bounded below for some
C € B(K, H) and they are characterized the intersection of the approximate point spectrum, the surjective
spectrum and the spectrum of M.

The next theorem is an extension of [13, Theorem 1], we will give some necessary and sufficient conditions

for M¢ to be left generalized Drazin invertible operator for some C' € B(K, H).

Theorem 3.1. For a given pair (A, B) of bounded operators, the following statements are equivalent:

(i) Mc is left generalized Drazin invertible for some C € B(K, H),

(ii) A is left generalized Drazin invertible and there exists a constant 6 such that
a(B—=X)<BA-X) if R(B—X) is closed,
or

B(A—=A]) =0 if R(B — AI) s not closed,
with 0 < |\ < 4.

To prove this theorem we need the following lemma.

Lemma 3.1. Let Th, T» and T3 € B(H) be ginven such that Ty is invertible. If a(T1) < oo and R(T1T>T3)

is closed, then R(T3) is also closed.

Proof. Follows from [12, Theorem 1]. O

Proof of Theorem 3.1. We first claim that if A is left generalized Drazin invertible and there exists a constant

d such that for every A with 0 < |A| < 6, R(B — M) is closed, then a(B — AI) < B(A — AI) is equivalent
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to Mc is left generalized Drazin invertible for some C' € B(K, H). Indeed, since A is left generalized Drazin
invertible, then by Theorem 1.2, A — Al is bounded below for 0 < |A] < 4.
Assume that a(B — AI) < (A — AI). Then there exists an isometry J : N(B —AI) — R(A— A\ )*. Define

an operator C' : K — H by

J 0 N(B - \I) R(A - \I)*
0 0 N(B — M)+ R(A—XI)
T
Let € N(M¢c — AI). Then
Y
x 0
(Mg — AI) = ;
Y 0

implies that (A—A)z+Cy =0 and (B—Al)y = 0. Since A— A[ is injective and the fact that N(C —AI) C
N(B — M)*, we get + =0 and y = 0. Then M¢ — A is injective.

x
Now we prove that R(M¢c — AI) is closed. Let € N(M¢ — M)*. Then

(Mc — A1) = (A= ADz + Cy|* + (B - AD)y|?
Y
= (A= AD|* + |Cyl* + (B = AD)y|*.
Write y := y; + y2, where y; € N(B — M) and yo € N(B — A)L. Then ||Cy|| = [jvi], [|[(A—A)z| >

Y(A =) ||z|| and ||(B — A)yz|| > v(B — M) ||ly2]|, because R(B — AI) and R(A — AI) are closed. Hence

2

(M¢ — )

v

Y2 (A = AD) [zl + g |? +72(B = AT) |y

2

%

min(y?(A — M), v*(B — \I), 1)
)

Then v(Mg — M) > 0 and (Mc — M) is bounded below for 0 < |A| < 4. It follows from Theorem 1.2 that
M is left generalized Drazin invertible.
Conversely, It suffices to show that if (A — AI) is bounded below with a(B — AI) > B(A — AI) for A € C,
then (Mo — AI) is not bounded below.
Assume that «(B — M) > (A — AI), so (A — AI) < co. We now consider the following two cases.
Case (1). If N(C) N N(B — M) # {0}. Then for all non-zero vector z € N(C) N N(B — AI) we have
(Mec — M)z = 0. We conclude that (M¢c — AI) is not bounded below.
Case (2). Suppose that N(C) N N(B — AI) = {0}. Then dim(C(N(B — \))) = a(B — A\I) > B(A — AI).
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Thus, C(N(B — X)) N R(A — M) # {0}. We take a non-zero vector z € C(N(B — AI)) N R(A — AI). Then
there exist some € H and y € K such that (A — Al)z = Cy = z and (B — Al)y = 0. Direct calculation

x
shows that (Mc — AI) = 0. It follows that (M¢ — AI) is not bounded below.
Y
We next claim that if A is left generalized Drazin invertible and there exists a constant § such that for

every A with 0 < |A| < §, R(B— AI) is not closed, then (A — AI) = oo is equivalent to M is left generalized
Drazin invertible for some C € B(K, H). Since R(B — AI) is not closed and S(A — AI) = oo, there exists an

isomorphism J : K — R(B — AI). Define an operator C': K — H in the following way:

R(A— \I)*

C::<J 0):K% R(A—AD

By a similar proof we check easily that N(Mq — AI) = {0} and v(Mc — M) > 0. That is (Mc — M) is
bounded below for 0 < |A| < ¢ and by Theorem 1.2 M¢ is left generalized Drazin invertible.

For the converse, suppose in the contrary that S(A — AI) < co. Then

(A=XD* 0
dimN =dimN((A - A)*) =B(A - A) < .
0 1
I 0 1 0
Since R((Mc—MNI)*) is closed and is invertible, by Lemma 3.1, we have that R
cr I 0 (B=AD*
is closed, that is R((B — AI)*) is closed. This contradicts our assumption. Therefore we must have
B(A = A]) = occ. O

By duality, we have:

Theorem 3.2. For a given pair (A, B) of operators, the following statements are equivalent:

(i) Mc is right generalized Drazin invertible for some C € B(K, H),

(ii) B is right generalized Drazin invertible and there exists a constant § such that
B(A—=X) <a(B-X) if R(LA— XI) is closed,
or

a(B — M) =00 if R(A — M) is not closed,
with 0 < |\ < 4.

As a direct application of Theorem 3.1, the following corollary can be derived to give a characterization

of o1gp(Mc) for all C € B(K, H).
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Corollary 3.1.

ﬂ ogp(Mc) =

CeB(K,H)
ogn(A) U {AeC:R(B—A\) is closed and S(A— X) < o(B — A\I)}

U {AeC:R(B— ) is not closed and B(A — AI) < 0o} .
The following is the dual statement of Corollary 3.1.

Corollary 3.2.

(| orgn(Mc) =

CEeB(K,H)
orgp(B) U {AeC:R(A—X) is closed and f(A— X)) > (B — )}

U {AeC:R(A— ) is not closed and a(B — \I) < oo} .
By combining Corollaries 3.1 and 3.2 we obtain;
Corollary 3.3.

() oep(Mc) = 01yp(A) | Jorgn(B) | J{N € C: B(A = AI) # a(B - AI)}.

CEB(K,H)

This result gives a generalization of [4, Theorem 2.1].

4. APPLICATION TO A SPECTRAL BOUNDARY VALUE MATRIX PROBLEM

This section is devoted to the study of boundary value problems described by an upper triangular operator
matrices (2 x 2) acting in Hilbert spaces with a complex spectral parameter A,
(UL - )\Mc)w =F

(P) ;
Tw=2%®

where F' and ® are given and Uj, is the matrix operator defined on H & K by

T L
UL: ;
0 D

with L : K — H a given linear operator. We first define the boundary value problem (P) by ordered pairs
(U, M¢) of an upper triangular operator matrix M¢ where Uy, is a right generalized Drazin invertible and
we construct the adapted boundary operator T' of Uy,. We prove the existence of an unique solution of (P)
and we give an explicit expression for this solution. Before this down, we define the boundary operator for

a right generalized Drazin invertible operator.
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If S be a right generalized Drazin inverse of the operator A € B(H), then
K(A)=(R(S)NK(A)® (NA)NK(A)). (4.1)
Now, let E another complex Hilbert space, called boundary space.

Definition 4.1. An operator I' : H — E is said to be a boundary operator for a right generalized Drazin
invertible operator A corresponding to its right generalized Drazin inverse S € B(H) if,

(i) K(A) c N(I);

(ii) There exists an operator I1 : E — H such that Tl = Iy and R(II) = N(A) N K(A).

Theorem 4.1. Let A € B(H) be a right generalized Drazin invertible operator with a right generalized Drazin
imverse S. An operator I' : H — E is a boundary operator for A corresponding to S if and only if there

exists a unique operator Il : E — H as in the Definition 4.1, such that
Tz =z — SAz, for allz € K(A). (4.2)

Proof. Let I' : H — E be a boundary operator for A corresponding to S, then there exists I[1 : F — H
satisfying the conditions of the Definition 4.1. Let z = x — SAx, then z = z+ S Az, sinse SAx € R(S)NK(A)
and x € K(A) we have 2 € N(A) N K(A), then z — SAx € R(II), thus there exists ¢ € E such that
x — SAx =Tlp. Since N(T") C K(A) and I'll = Iy, we have I'(z — SAz) = I'llp and ¢ = I'z, which implies
(4.2).

The uniqueness of IT is directly obtained.

Conversely, suppose that T" and II satisfies the identity (4.2). Then AIIT'xz = 0, for all x € K(A), so AIl =0

on E. Moreover,
II'MTx = IIl'z — SAIITx = III'x.

Hence T'TITTITx = I'Til'z, so I'llp = ¢ for all ¢ € E, by taking ¢ = I'llT'x. Finally, we have I'SAz =
Iz —TIT'z = 0. Thus K(A) C N(T) O

Remark 4.1. If T is a boundary operator for a right generalized Drazin invertible operator A corresponding

to its right generalized Drazin inverse S, then
K(A) = (R(S)NK(A)) ® R(IT). (4.3)

Proposition 4.1 ( [15]). Let A, B € B(H). Then (I —AAB) is invertible if and only if (I—ABA) is invertible
for all A # 0.

In this case, we have

(I =ABA)™' =T+ \B(I — AAB) 'A, (4.4)
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and

(I —=AAB)™' =1+ )A(I — A\BA)"'B. (4.5)
Corollary 4.1. Let A, B € B(H). If \™! € p(AB) then

(I =MAB)™'A = A(I —\BA)™ ™.

Proposition 4.2. Let Uy = defined on H @ K. Assume that S1 and S are right generalized
0 D

Drazin inverses of T and D respectively. I'y and 'y are boundary operators for T and D with the boundary
ry o0

spaces E and Z; respectively. If N(D) C N(L) then the operator T' = ' from H® K into E® Z
0 Iy

is a boundary operator for Up.

Proof. We have that K(T) c N(T'y), K(D) € N(I'3) and there exist II; : £ — H and Il : 7 — K
such that T4II; = I, R(II;) = N(T)N K(T) and Tolly = Iz, R(IIz) = N(D) N K(D). Denote by
I, 0

II= F@eZ — HoOK.
0 1,

Since T' and D are right generalized Drzain invertibles, then so is Uy, hence K(UL) = K(T') & K (D), that
is K(Uy) € N(T) and T = Ipey.
The condition N (D) C N(L) implies that

NUL)NK(Uyp)

(N(T) @ N(D)) N (K(T) @ K(D))

= N(T)NnK(T)® N(D) N K(D) = R(II).
O

Consider the operator Uy, defined as above and let A € B(H) and B € B(K) be given bounded operators
on separable Hilbert spaces H and K, and M¢ defined on H @ K by (1.1). We define the following spectral

boundary value matrix problem for unknown w € K(T') x K(D) by

(UL - )\Mc)w =F

Tw=2®

where F' € K(T)xK(D),® € ExZ and A € C is a spectral parameter. We denote R)[S1A] = (I —\S1A4)7!
and Ry[S24] = (Ix — A\S2A)~1, S; and S5 are right generalized Drazin inverses of T and D, respectively.
Our purpose is to establish the existence and uniqueness of solutions for the boundary value problem (P).

In the theorem below, we give an explicit expression for the solution of the problem (P).
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Theorem 4.2. If A=t € p(S1A) N p(SeB), the boundary value problem (P) is uniquely solvable for any
F e K(T)x K(D) and ® € E x Z, the solution is given by

wy'® = G(SF +119),

S1 0 Ry[S14] —=Si1RA[S1A](L — AC)R,\[S2 B]
where S = and G = .
0 SQ 0 R)\[S2B]

Proof. We have (U — AM¢)wy'® = (U, — AMe)GSF + (U, — AM¢)GTI®. Firstly, we calculate (U —
AM¢)GSF.

(UL — A\M¢)GSF =

(U — AM¢) ( Ri[S14]  =SiRa[S14](L = AC)RA[S: B] ) ( Si1fi )

0 R\[S2B] Sa fo

(T —\A) (L—)O) R[S14]S1f1 — S1RA[S1A|(L — A\C)R,\[S2B]Sa f-
0 (D — AB) R\[S2B]S2 fa

Y

(T — MA)S1RA\[AS] f1
(D — AB)S2RA\[BS3] f2

and

(T — /\A) [R)\ [SlA]H1<p1 — SlR,\[SlA](L — )\C)R,\ [SQB]HQL,OQ]
+(L — AC)R)[S2 B]a¢02
(D = AB)R[S2 B]Il2

(UL — AM¢)GTI®

(T — MA)RA[S1 AL 1
(D — )\B)R/\[SQB]HQ()OQ

(D — )\B)[IK + )\SQR)\[BSQ]B}HQSOQ

. (T — )\A)Hl(pl + )\Angﬁl
(D — AB)apq + ABIl2p2
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Then (Urp — AM¢)GII® = 0 since R(II;) = N(T) N K(T) and R(Ilz) = N(D) N K (D). Using the fact that
K(T) C N(I'1) and K(D) C N(I'2), we obtain,

Twy® = TG(SF +11d)
_[Tnoo R [S14]5) f1 — S1RA[S1A](L — AC)R[S2B]Ss f
0 Iy R\ [S2B]S: fa

Fl 0 R)\[SlA]chpl — SlR)\ [SlAKL — AC)R)\ [SQB]HQQDQ
0 I R\ [S2 B2

FlR)\[SlA]Hupl — Flis,\[SlA](L — )\C)R,\[SQB]HQ@Q
CaRA\[S2 B2z

B Fl[IH + )\SlR)\[Asl]A]H;[(pl
FQ [IK + )\SQR)\ [BSQ]B]HQ(,OQ

I II
_ 1111 _ %
DaIlago

The uniqueness of the solution of (P) follows from standard arguments. That is, if w1, ws € K(T) x K(D)
S1.fo +Higo

Uo
are two solutions of (P), assume that wg = w; — we = =
Sago + oty

Vo

) with some fy €

K(T), go € K(D), o € E and 9 € Z. Thus,

(UL — AMc)wo = 0

Fwozo

0
Since K(Ur) C N(I') and I'll = Iggz, the second identity gives ( LA . Then uy = 51 fp and
Yo 0

Vo = SZQ(). SO,
0= (Us — A\Mc)wy = ( (T —2A4) (L-AC) ) ( S1 fo )
0 (D = AB) Sago

(T — /\A)Slfo + (L — )\C)Sgg()
(D — AB)S290 '

Then, fo = go = 0, since A™! € p(S14)Np(S1B), fo € K(T) and go € K (D). Hence w; = wy. This complete
the proof. O
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