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Abstract. We introduce a truncated M -fractional derivative type for α-differentiable functions that gener-

alizes four other fractional derivatives types recently introduced by Khalil et al., Katugampola and Sousa et

al., the so-called conformable fractional derivative, alternative fractional derivative, generalized alternative

fractional derivative and M -fractional derivative, respectively. We denote this new differential operator by

iD
α,β
M , where the parameter α, associated with the order of the derivative is such that 0 < α < 1, β > 0

and M is the notation to designate that the function to be derived involves the truncated Mittag-Leffler

function with one parameter.

The definition of this truncated M -fractional derivative type satisfies the properties of the integer-order

calculus. We also present, the respective fractional integral from which emerges, as a natural consequence,

the result, which can be interpreted as an inverse property. Finally, we obtain the analytical solution of the

M -fractional heat equation and present a graphical analysis.

1. Introduction

The non integer-order calculus or fractional calculus, as it is largely diffused, is as important and ancient

as the integer-order calculus, and for many years the scientific community didn’t know it. Currently, there

are numerous and important definitions of fractional derivatives types, each one of them with its peculiarity
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and application [1–3]. Although, to be highlighted only from 1974, after the first international conference on

fractional calculus, it has shown to be important and with great applicability in modeling problems, more

precisely natural phenomena. For this growth, it was necessary the contribution of famous mathematicians,

such as Lagrange, Abel, Euler, Liouville, Riemann, as well as recently Caputo and Mainardi, among others.

It is possible to define various integrals and fractional derivatives. Each definition has its own peculiarity

and thus makes the fractional calculus fruitful in the sense of theory and applications. We report some types

of fractional derivatives that have been introduced so far, among which we mention: Riemann-Liouville,

Caputo, Hadamard, Caputo-Hadamard, Riesz, among others [3, 4]. Many of these derivatives are defined

from the fractional integral in the Riemann-Liouville sense. Recently, Katugampola [5], has presented a new

fractional integral unifying six existing fractional integrals, named Riemann-Liouville, Hadamard, Erdélyi-

Kober, Katugampola, Weyl and Liouville [3, 6].

On the other hand, also recent, Khalil et al. [7] proposed the so-called compatible fractional derivative of

order α with 0 < α < 1 in order to generalize the classical properties of calculus. More recently, in 2014,

Katugampola [8] has also proposed an alternative fractional derivative with classical properties, which refers

to the Leibniz and Newton calculus, similar to the conformable fractional derivative. In 2017, Sousa and

Oliveira [9], introduced an M -fractional derivative involving a Mittag-Leffler function with one parameter [10]

that also satisfies the properties of integer-order calculus. In this sense, we are going to introduce a truncated

M -fractional derivative type that unifies four existing fractional derivative types mentioned above and which

also satisfies the classical properties of integer-order calculus.

The study of differential equations has proved very useful over time. One of the main reasons is that

the simplest differential equations have the ability to model more complex natural systems [1, 3, 11]. There

are a larger number of application involving differential equations of which we mention: the problem of

population dynamics, brachistochronous problem, wave equation, heat equation and others [1,12]. However,

natural systems over time, become more complex and more than differential equations, provides a rough and

simplified description of the actual process, it is necessary that new and more refined mathematical tools are

presented and studied. In this sense, fractional derivatives are used to propose modeling in order to obtain

more precise results in the studies and applications involving differential equations [11]. Then through the

use of properties of a truncated M -fractional derivative type, we will present an analytical study of the

heat equation and through graph, we will analyze the behavior of the solution in relation to other types of

fractional derivatives the so-called local derivatives.

This paper is organized as follows: in section 2, our main result, we introduce the concept of truncated

M -fractional derivative type involving a truncated Mittag-Leffler function, as well as several theorems.

Also, we introduce the respective M -fractional integral for which we demonstrate the inverse property. In

section 3, we present the relationship between a truncated M -fractional derivative type, introduced here,
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and the conformable fractional derivative, generalized and alternative fractional derivative and M -fractional

derivative. In section 4, we perform an analytical study of the M -fractional heat equation in order to obtain

the analytical solution and present some graphs. Concluding remarks close the paper.

2. Truncated M-fractional derivative type

In this section, we define a truncated M -fractional derivative type and obtain several results that have a

great similarity with the results found in the classical calculus. From the definition, we present a theorem

showing that this truncated M -fractional derivative type is linear, obeys the product rule and the composition

of two α-differentiable functions, the quotient rule and the chain rule. It is also shown that the derivative

of a constant is zero, as well as versions for Rolle’s theorem, the mean value theorem and an extension of

the mean value theorem. Further, the continuity of this truncated M -fractional derivative type is shown as

in integer-order calculus. Also, we introduce the concept of M -fractional integral of a f function. From the

definition, we shown the inverse theorem.

We define the truncated Mittag-Leffler function of one parameter by:

iEβ (z) =

i∑
k=0

zk

Γ (βk + 1)
, (2.1)

with β > 0 and z ∈ C.

From Eq.(2.1), we define a truncated M -fractional derivative type that unifies other four fractional deriva-

tives that refer to classical properties of the integer-order calculus.

In this work, if a truncated M -fractional derivative type of order α as defined in Eq.(2.2) of a function f

exists, we say that the function f is α-differentiable.

Thus, let us begin with the following definition, which is a generalization of the usual definition of integer

order derivative.

Definition 2.1. Let f : [0,∞) → R. For 0 < α < 1 a truncated M -fractional derivative type of f of order

α, denoted by iD
α,β
M , is

iD
α,β
M f (t) := lim

ε→0

f (t iEβ (εt−α))− f (t)

ε
, (2.2)

∀t > 0 and iEβ (·), β > 0 is a truncated Mittag-Leffler function of one parameter, as defined in Eq.(2.1).

Note that, if f is α-differentiable in some open interval (0, a), a > 0, and lim
t→0+

(
iD

α,β
M f (t)

)
exist, then

we have

iD
α,β
M f (0) = lim

t→0+

(
iD

α,β
M f (t)

)
.

Theorem 2.1. If a function f : [0,∞)→ R is α-differentiable for t0 > 0, with 0 < α ≤ 1, β > 0, then f is

continuous at t0.
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Proof. In fact, let us consider the identity

f
(
t0 iEβ

(
εt−α0

))
− f (t0) =

(
f
(
t0 iEβ

(
εt−α0

))
− f (t0)

ε

)
ε. (2.3)

Applying the limit ε→ 0 on both sides of Eq.(4.1), we get

lim
ε→0

f
(
t0 iEβ

(
εt−α0

))
− f (t0) = lim

ε→0

(
f
(
t0 iEβ

(
εt−α0

))
− f (t0)

ε

)
lim
ε→0

ε

= iD
α,β
M f (t) lim

ε→0
ε

= 0.

Then, f is continuous at t0. �

Using the definition of truncated Mittag-Leffler function of one parameter, we have

f
(
t iEβ

(
εt−α

))
= f

(
t

i∑
k=0

(εt−α)
k

Γ (βk + 1)

)
. (2.4)

Applying the limit ε→ 0 on both sides of Eq.(2.4) and since f is a continuous function, we have

lim
ε→0

f
(
t iEβ

(
εt−α

))
= lim

ε→0
f

(
t

i∑
k=0

(εt−α)
k

Γ (βk + 1)

)

= f

(
t lim
ε→0

i∑
k=0

(εt−α)
k

Γ (βk + 1)

)
. (2.5)

Further, we have

t iEβ
(
εt−α

)
= t

i∑
k=0

(εt−α)
k

Γ (βk + 1)

= t+
εt1−α

Γ (β + 1)
+

t (εt−α)
2

Γ (2β + 1)
+

t (εt−α)
3

Γ (3β + 1)
+ · · ·+ t (εt−α)

i

Γ (iβ + 1)
.

(2.6)

Applying the limit ε→ 0 on both sides of Eq.(2.6), we have

lim
ε→0

i∑
k=0

(εt−α)
k

Γ (βk + 1)
= 1.

In this way, we conclude that

lim
ε→0

f
(
t iEβ

(
εt−α

))
= f (t) . (2.7)

Here, we present the theorem that encompasses the main classical properties of integer order calculus. For

the chain rule, it is verified through an example, as we will see next. We will do here, only the demonstration

of the chain rule, for other items, follow the same steps of Theorem 2 found in the paper by Sousa and

Oliveira [9].
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Theorem 2.2. Let 0 < α ≤ 1, β > 0, a, b ∈ R and f, g α-differentiable, at a point t > 0. Then:

(1) iD
α,β
M (af + bg) (t) = a iD

α,β
M f (t) + b iD

α,β
M g (t).

(2) iD
α,β
M (f · g) (t) = f (t) iD

α,β
M g (t) + g (t) iD

α,β
M f (t).

(3) iD
α,β
M

(
f

g

)
(t) =

g (t) iD
α,β
M f (t)− f (t) iD

α,β
M g (t)

[g (t)]
2 .

(4) iD
α,β
M (c) = 0, where f(t) = c is a constant.

(5) (Chain rule)If f is differentiable, then iD
α,β
M (f) (t) =

t1−α

Γ (β + 1)

df(t)

dt
.

Proof. From Eq.(2.6), we have

t iEβ
(
εt−α

)
= t+

εt1−α

Γ (β + 1)
+O

(
ε2
)
,

and introducing the following change,

h = εt1−α
(

1

Γ (β + 1)
+O (ε)

)
⇒ ε =

h

t1−α
(

1
Γ(β+1) +O (ε)

) ,
we conclude that

iD
α,β
M f (t) = lim

ε→0

f (t+ h)− f (t)

htα−1

1
Γ(β+1) (1 + Γ (β + 1)O (ε))

=
t1−α

Γ (β + 1)
lim
ε→0

f (t+ h)− f (t)

h
1 + Γ (β + 1)O (ε)

=
t1−α

Γ (β + 1)

df (t)

dt
,

with β > 0 and t > 0. �

(6) iD
α,β
M (f ◦ g) (t) = f ′(g(t))iD

α,β
M g(t), for f differentiable at g(t).

Now, it is necessary to know if, in addition to the previous Theorem 2 that contains important properties

similar to integer-order calculus, this truncated M -fractional derivative type Eq.(2.2) also has important

theorems related to the classical calculus. We shall now see that: the Rolle’s theorem, the mean value theorem

and its extension coming from the integer-order calculus can be extended to α-differentiable functions, i.e.,

that admit truncated M -fractional derivative as introduced in Eq.(2.2).

Theorem 2.3. (Rolle’s theorem for fractional α-differentiable functions) Let a > 0, and f : [a, b]→ R be a

function with the properties:

(1) f is continuous on [a, b].

(2) f is α-differentiable on (a, b) for some α ∈ (0, 1).

(3) f(a) = f(b).

Then, ∃c ∈ (a, b), such that iD
α,β
M f(c) = 0, with β > 0.
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Proof. Since f is continuous on [a, b] and f(a) = f(b), there exist c ∈ (a, b), at which the function has a local

extreme. Then,

iD
α,β
M f (c) = lim

ε→0−

f (c iEβ (εc−α))− f (c)

ε
= lim
ε→0+

f (c iEβ (εc−α))− f (c)

ε
.

But, the two limits have opposite signs. Hence, iD
α,β
M f (c) = 0. �

The proof of Theorem 4 and Theorem 5, will be omitted, but follow the same reasoning of the respective

theorems demonstrated in Sousa and Oliveira [9].

Theorem 2.4. (Mean-value theorem for fractional α-differentiable functions) Let a > 0 and f : [a, b] → R

be a function with the properties:

(1) f is continuous on [a, b].

(2) f is α-differentiable on (a, b) for some α ∈ (0, 1).

Then, ∃c ∈ (a, b), such that

iD
α,β
M f (c) =

f (b)− f (a)

bα

α
− aα

α

,

with β > 0.

Theorem 2.5. (Extension mean value theorem for fractional α-differentiable functions) Let a > 0, and

f, g : [a, b]→ R functions that satisfy:

(1) f, g are continuous on [a, b].

(2) f, g are α-differentiable for some α ∈ (0, 1).

Then, ∃c ∈ (a, b), such that

iD
α,β
M f (c)

iD
α,β
M g (c)

=
f (b)− f (a)

g (b)− g (a)
, (2.8)

with β > 0.

Definition 2.2. Let α ∈ (n, n + 1], for some n ∈ N, β > 0 and f n-differentiable for t > 0. Then the

α-fractional derivative of f is defined by

iD
α,β;n
M f (t) := lim

ε→0

f (n) (t iEβ (εtn−α))− f (n) (t)

ε
, (2.9)

since the limit exist.

From Definition 2 and the chain rule, that is, from item 5 of Theorem 2, by induction on n, we can prove

that iD
α,β;n
M f (t) =

tn+1−α

Γ (β + 1)
f (n+1)(t), α ∈ (n, n+ 1] and f is (n+ 1)-differentiable for t > 0.

Now, we know that: this truncated M -fractional derivative type Eq.(2.2) has a corresponding M -fractional

integral. Then, we will present the definition and a theorem that corresponds to the inverse property. For

other results involving integrals, one can consult [9, 13].
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Definition 2.3. Let a ≥ 0 and t ≥ a. Also, let f be a function defined in (a, t] and 0 < α < 1. Then, the

M -fractional integral of order α of function f is defined by [9]

MIα,βa f (t) = Γ (β + 1)

∫ t

a

f (x)

x1−α dx, (2.10)

with β > 0.

Theorem 2.6. (Inverse) Let a ≥ 0 and 0 < α < 1. Also, let f be a continuous function such that exist

MIα,βa f . Then

iD
α,β
M (MIα,βa f (t)) = f(t), (2.11)

with t ≥ a and β > 0.

Proof. In fact, using the chain rule as seen in Theorem 2.2, we have

iD
α,β
M

(
MIα,βa f (t)

)
=

t1−α

Γ (β + 1)

d

dt
(MIα,βa f (t))

=
t1−α

Γ (β + 1)

d

dt

(
Γ (β + 1)

∫ t

a

f (x)

x1−α dx

)
=

t1−α

Γ (β + 1)

(
Γ (β + 1)

t1−α
f (t)

)
= f (t) . (2.12)

�

With the condition f(a) = 0, by Theorem 6, that is, Eq.(2.12), we have MIα,βa

[
iD

α,β
M f(t)

]
= f(t).

3. Relation with other fractional derivatives types

In this section, we will discuss the relationship between the fractional conformable derivative proposed

by Khalil et al. [7], the alternative fractional derivative and the generalized alternative fractional derivative

proposed by Katugampola [8] and the M -fractional derivative proposed by Sousa and Oliveira [9], with our

truncated M -fractional derivative type.

Khalil et al. [7] proposed a definition of a fractional derivative, called conformable fractional derivative

that refers to the classical properties of integer order calculus, given by

f (α) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
, (3.1)

with α ∈ (0, 1) and t > 0.

In 2014, Katugampola [8] proposed another definition of a fractional derivative, called an alternative

fractional derivative which also refers to the classical properties of integer-order calculus, given by

Dαf (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, (3.2)
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with α ∈ (0, 1) and t > 0.

In the same paper, Katugampola [8] by means of a truncated exponential function, that is, ke
x, proposed

another generalized fractional derivative, given by

Dαk f (t) = lim
ε→0

f
(
ke
εt−αt

)
− f (t)

ε
, (3.3)

with α ∈ (0, 1) and t > 0.

Recently, Sousa and Oliveira [9] introduced the M -fractional derivative Dα,β
M where the parameter β > 0

and M is the notation to designate that the function to be derived involves the Mittag-Leffler function of

one parameter, given by

Dα,β
M f (t) := lim

ε→0

f (t Eβ (εt−α))− f (t)

ε
, (3.4)

with α ∈ (0, 1) and t > 0.

It is clear that our definition of truncated M -fractional derivative type Eq.(2.2) is more general than the

fractional derivatives Eq.(3.1), Eq.(3.2), Eq.(3.3) and Eq.(3.4). We will now study particular cases involving

such fractional derivatives.

Choosing β = 1 and applying the limit i→ 0 on both sides of Eq.(2.2), we have

1D
α,β
M f (t) = lim

ε→0

f (t 1E1 (εt−α))− f (t)

ε
. (3.5)

But, it is know that

1E1

(
εt−α

)
=

1∑
k=0

(εt−α)
k

Γ (k + 1)
= 1 + εt−α. (3.6)

Thus, we conclude that

1D
α,β
M f (t) = lim

ε→0

f
(
t+ εt1−α

)
− f (t)

ε
= f (α)(t), (3.7)

which is exactly the conformable fractional derivative Eq.(3.1).

Choosing β = 1 and applying the limit i→∞ on both sides of Eq.(2.2), we have

∞Dα,β
M f (t) = lim

ε→0

f (t ∞E1 (εt−α))− f (t)

ε
. (3.8)

But, as we have

∞E1

(
εt−α

)
=

∞∑
k=0

(εt−α)
k

Γ (k + 1)
= eεt

−α
, (3.9)

we conclude that

∞Dα,β
M f (t) = lim

ε→0

f
(
teεt

−α
)
− f (t)

ε
= Dαf (t) , (3.10)

which is exactly the alternative fractional derivative, Eq.(3.2).
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Choosing β = 1 in Eq.(2.2), we have

iD
α,β
M f (t) = lim

ε→0

f (t iE1 (εt−α))− f (t)

ε
. (3.11)

Remembering that

iE1

(
εt−α

)
=

i∑
k=0

(εt−α)
k

Γ (k + 1)
= eεt

−α

i , (3.12)

we have

iD
α,β
M f (t) = lim

ε→0

f
(
eεt

−α

i t
)
− f (t)

ε
= Dαi f (t) , (3.13)

exactly the generalized fractional derivative, Eq.(3.3).

Finally, applying the limit i→∞ on both sides of Eq.(2.2), we have

∞Dα,β
M f (t) = lim

ε→0

f (t ∞Eβ (εt−α))− f (t)

ε
, (3.14)

since

∞Eβ
(
εt−α

)
=

∞∑
k=0

(εt−α)
k

Γ (k + 1)
= Eβ

(
εt−α

)
, (3.15)

we conclude that

∞Dα,β
M f (t) = lim

ε→0

f (t Eβ (εt−α))− f (t)

ε
= Dα,β

M f (t) , (3.16)

exactly the M -fractional derivative, Eq.(3.4).

4. Application

In this section, we obtain the solution of the heat equation using a truncated M -fractional derivative type

with 0 < α < 1 and present some graphs about the behavior of the solution.

Consider the heat equation in one dimension given by

∂u (x, t)

∂t
= k

∂2u (x, t)

∂x2
, 0 < x < L, t > 0,

where k is a positive constant.

Using a M -fractional derivative type, we propose an M -fractional heat equation given by

∂αu (x, t)

∂tα
= k

∂2u (x, t)

∂x2
, 0 < x < L, t > 0, (4.1)

where 0 < α < 1 and with the initial condition and boundary conditions given by

u (0, t) = 0 , t ≥ 0, (4.2)

u (L, t) = 0 , t ≥ 0,

u (x, 0) = f (x) , 0 ≤ x ≤ L.
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We start, considering the so-called M -fractional linear differential equation with constant coefficients

∂αv (x, t)

∂tα
± µ2v (x, t) = 0, (4.3)

where µ2 is a positive constant.

Using the item 5 in Theorem 2.2, the Eq.(4.1) can be written as follows

t1−α

Γ (β + 1)

dv (x, t)

dt
± µ2v (x, t) = 0,

whose solution is given by

v (t) = ce±Γ(β+1)µ
2tα

α , (4.4)

with 0 < α < 1 and β > 0.

Now, we will use separation of variables method to obtain the solution of the M -fractional heat equation.

Then, considering u (x, t) = P (x)Q (t) and replacing in Eq.(4.1), we get

dα

dtα
Q (t)P (x) = k

d2

dx2
P (x)Q (t)

which implies

1

kQ (t)

dα

dtα
Q (t) =

1

P (x)

d2

dx2
P (x) = ξ. (4.5)

From Eq.(4.5), we obtain a system of differential equations, given by

dα

dtα
Q (t)− kξQ (t) = 0 (4.6)

and

d2

dx2
P (x)− ξP (x) = 0. (4.7)

First, let’s find the solution of Eq.(4.7). For this, we must study three cases, that is, ξ = 0, ξ = −µ2 e

ξ = µ2.

Case 1: ξ = 0.

Substituting ξ = 0 into Eq.(4.7), we have

d2

dx2
P (x)− ξP (x) = 0, (4.8)

whose solution is given by P (x) = c1x+ c2, with c1 and c2 arbitrary constant. Using the initial conditions

given by Eq.(4.2), we obtain that c1 = c2 = 0. Like this, P (x) = 0, which implies u(x, t) = 0 trivial solution.

Case 2: ξ = −µ2.

Substituting ξ = −µ2 into Eq.(4.7), we get

d2

dx2
P (x) + µ2P (x) = 0,
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whose solution is given by P (x) = c2 sin (µx) + c1 cos (µx), with c1 and c2 arbitrary constant. Using the

initial conditions Eq.(4.2), we obtain c1 = 0 and 0 = c2 sin (µx) which implies that µ = nπ
L , with n = 1, 2, ....

Then, we obtain

Pn (x) = an sin
(nπx
L

)
and µ =

nπ

L
.

Case 3: ξ = µ2.

Substituting ξ = µ2 into Eq.(4.7), we get

d2

dx2
P (x)− µ2P (x) = 0

whose solution is given by P (x) = c1 e
µx + c2 e

−µx = A cosh (µx) +B sinh (µx), with c1, c2, A, B arbitrary

constant. Using the boundary conditions Eq.(4.2), we have A = 0 and 0 = B sinh (µx). As λ = −µ2 < 0 and

λL 6= 0 then sinh (µx) 6= 0. Like this, we get B = 0 and then Pn (x) = 0, which implies u(x, t) = 0, trivial

solution.

Therefore, the solution of Eq.(4.7) is given by

Pn (x) = an sin
(nπx
L

)
andµ =

nπ

L
. (4.9)

Using the Eq.( 4.3) and Eq.(4.4), we have

Qn (t) = bn exp

(
−Γ (β + 1)

(nπ
L

)2 k

α
tα
)
, (4.10)

where bn are constant coefficients.

So, using the Eq.(4.9) and Eq.(4.10), the partial solutions of Eq.(4.1), is given by

uβ (x, t) =

∞∑
n=1

cn sin
(nπx
L

)
exp

(
−Γ (β + 1)

(nπ
L

)2 k

α
tα
)
.

Using Eq.(4.2), we get

u (x, 0) = f (x) =
∞∑
n=1

cn sin
(nπx
L

)
which provides cn through

cn =
2

L

∫ L

0

f (x) sin
(nπx
L

)
dx.

So, we conclude that the solution ofM -fractional heat equation Eq.(4.1), satisfying the conditions Eq.(4.2),

is given by

uβ (x, t) =

∞∑
n=1

sin
(nπx
L

)
exp

(
−Γ (β + 1)

(nπ
L

)2 k

α
tα
)(

2

L

∫ L

0

f (x) sin
(nπx
L

)
dx

)
. (4.11)

Taking the limit β → 1 in the last equation and using Eq.(2.2), we have

u (x, t) =

∞∑
n=1

sin
(nπx
L

)
exp

(
−
(nπ
L

)2 k

α
tα
)(

2

L

∫ L

0

f (x) sin
(nπx
L

)
dx

)
, (4.12)

which is exactly the solution of the fractional heat equation proposed by Çenesiz et al. [14].
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On the other hand, taking the limit β → 1 and α → 1, using Eq.(2.2), we recover the solution of heat

equation of integer order.

u (x, t) =

∞∑
n=1

sin
(nπx
L

)
exp

(
−
(nπ
L

)2

kt

)(
2

L

∫ L

0

f (x) sin
(nπx
L

)
dx

)
. (4.13)

Next, we will present some plots by choosing values for the parameters β and α, to see the behavior of

the solution presented in Eq (2.2). The graphics were plotted using MATLAB 7:10 software (R2010a). For

the elaboration of the following plots, we choose the function f(x) = 50x(1 − x) and for each fixed β, we

vary the α parameter.

Figure 1. Analytical solution of the M -fractional heat equation Eq.(4.11). We consider

the values β = 0.5, L = 1, k = 0.003 and at time t = 150.
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Figure 2. Analytical solution of the M -fractional heat equation Eq.(4.11). We take the

values β = 1.0, L = 1, k = 0.003 and at time t = 150.
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Figure 3. Analytical solution of the M -fractional heat equation Eq.(4.11). We chose the

values β = 2.0, L = 1, k = 0.003 and at time t = 150.
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5. Concluding remarks

We introduced a new truncated M -fractional derivative type for α-differentiable functions and conse-

quently its M -fractional integral, we obtained important results with respect to the properties of the integer-

order derivative.

For a class of α-differentiable functions, in the context of fractional derivatives, we conclude that this

truncated M -fractional derivative type proposed here behaves well with respect to the classical properties of

integer-order calculus.

Using the truncated Mittag-Leffler function, it was possible to introduce a truncated M -fractional deriva-

tive type associated with α-differentiable functions and consequently we obtained a very important relation

with the fractional derivatives mentioned in the paper as seen in section 3. We conclude that the presented

results contain as particular cases the derivatives proposed by Khalil et al. [7], Katugampola [8] and Sousa

and Oliveira [9]. In addition, using our truncated M -fractional derivative type we performed and discussed

the analytical solution of the heat equation.
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